Misplaced Pages

Feynman slash notation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Dirac slash) Notation for contractions with gamma matrices

In the study of Dirac fields in quantum field theory, Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation). If A is a covariant vector (i.e., a 1-form),

A /   = d e f   γ 0 A 0 + γ 1 A 1 + γ 2 A 2 + γ 3 A 3 {\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{0}A_{0}+\gamma ^{1}A_{1}+\gamma ^{2}A_{2}+\gamma ^{3}A_{3}}

where γ are the gamma matrices. Using the Einstein summation notation, the expression is simply

A /   = d e f   γ μ A μ {\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{\mu }A_{\mu }} .

Identities

Using the anticommutators of the gamma matrices, one can show that for any a μ {\displaystyle a_{\mu }} and b μ {\displaystyle b_{\mu }} ,

a / a / = a μ a μ I 4 = a 2 I 4 a / b / + b / a / = 2 a b I 4 . {\displaystyle {\begin{aligned}{a\!\!\!/}{a\!\!\!/}=a^{\mu }a_{\mu }\cdot I_{4}=a^{2}\cdot I_{4}\\{a\!\!\!/}{b\!\!\!/}+{b\!\!\!/}{a\!\!\!/}=2a\cdot b\cdot I_{4}.\end{aligned}}}

where I 4 {\displaystyle I_{4}} is the identity matrix in four dimensions.

In particular,

/ 2 = 2 I 4 . {\displaystyle {\partial \!\!\!/}^{2}=\partial ^{2}\cdot I_{4}.}

Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example,

γ μ a / γ μ = 2 a / γ μ a / b / γ μ = 4 a b I 4 γ μ a / b / c / γ μ = 2 c / b / a / γ μ a / b / c / d / γ μ = 2 ( d / a / b / c / + c / b / a / d / ) tr ( a / b / ) = 4 a b tr ( a / b / c / d / ) = 4 [ ( a b ) ( c d ) ( a c ) ( b d ) + ( a d ) ( b c ) ] tr ( a / γ μ b / γ ν ) = 4 [ a μ b ν + a ν b μ η μ ν ( a b ) ] tr ( γ 5 a / b / c / d / ) = 4 i ε μ ν λ σ a μ b ν c λ d σ tr ( γ μ a / γ ν ) = 0 tr ( γ 5 a / b / ) = 0 tr ( γ 0 ( a / + m ) γ 0 ( b / + m ) ) = 8 a 0 b 0 4 ( a . b ) + 4 m 2 tr ( ( a / + m ) γ μ ( b / + m ) γ ν ) = 4 [ a μ b ν + a ν b μ η μ ν ( ( a b ) m 2 ) ] tr ( a / 1 . . . a / 2 n ) = tr ( a / 2 n . . . a / 1 ) tr ( a / 1 . . . a / 2 n + 1 ) = 0 {\displaystyle {\begin{aligned}\gamma _{\mu }{a\!\!\!/}\gamma ^{\mu }&=-2{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}\gamma ^{\mu }&=4a\cdot b\cdot I_{4}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}\gamma ^{\mu }&=-2{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}\gamma ^{\mu }&=2({d\!\!\!/}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}+{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}{d\!\!\!/})\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/})&=4a\cdot b\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4\left\\\operatorname {tr} ({a\!\!\!/}{\gamma ^{\mu }}{b\!\!\!/}{\gamma ^{\nu }})&=4\left\\\operatorname {tr} (\gamma _{5}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4i\varepsilon _{\mu \nu \lambda \sigma }a^{\mu }b^{\nu }c^{\lambda }d^{\sigma }\\\operatorname {tr} ({\gamma ^{\mu }}{a\!\!\!/}{\gamma ^{\nu }})&=0\\\operatorname {tr} ({\gamma ^{5}}{a\!\!\!/}{b\!\!\!/})&=0\\\operatorname {tr} ({\gamma ^{0}}({a\!\!\!/}+m){\gamma ^{0}}({b\!\!\!/}+m))&=8a^{0}b^{0}-4(a.b)+4m^{2}\\\operatorname {tr} (({a\!\!\!/}+m){\gamma ^{\mu }}({b\!\!\!/}+m){\gamma ^{\nu }})&=4\left\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n})&=\operatorname {tr} ({a\!\!\!/}_{2n}...{a\!\!\!/}_{1})\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n+1})&=0\end{aligned}}}

where:

  • ε μ ν λ σ {\displaystyle \varepsilon _{\mu \nu \lambda \sigma }} is the Levi-Civita symbol
  • η μ ν {\displaystyle \eta ^{\mu \nu }} is the Minkowski metric
  • m {\displaystyle m} is a scalar.

With four-momentum

This section uses the (+ − − −) metric signature. Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum: using the Dirac basis for the gamma matrices,

γ 0 = ( I 0 0 I ) , γ i = ( 0 σ i σ i 0 ) {\displaystyle \gamma ^{0}={\begin{pmatrix}I&0\\0&-I\end{pmatrix}},\quad \gamma ^{i}={\begin{pmatrix}0&\sigma ^{i}\\-\sigma ^{i}&0\end{pmatrix}}\,}

as well as the definition of contravariant four-momentum in natural units,

p μ = ( E , p x , p y , p z ) {\displaystyle p^{\mu }=\left(E,p_{x},p_{y},p_{z}\right)\,}

we see explicitly that

p / = γ μ p μ = γ 0 p 0 γ i p i = [ p 0 0 0 p 0 ] [ 0 σ i p i σ i p i 0 ] = [ E σ p σ p E ] . {\displaystyle {\begin{aligned}{p\!\!/}&=\gamma ^{\mu }p_{\mu }=\gamma ^{0}p^{0}-\gamma ^{i}p^{i}\\&={\begin{bmatrix}p^{0}&0\\0&-p^{0}\end{bmatrix}}-{\begin{bmatrix}0&\sigma ^{i}p^{i}\\-\sigma ^{i}p^{i}&0\end{bmatrix}}\\&={\begin{bmatrix}E&-{\vec {\sigma }}\cdot {\vec {p}}\\{\vec {\sigma }}\cdot {\vec {p}}&-E\end{bmatrix}}.\end{aligned}}}

Similar results hold in other bases, such as the Weyl basis.

See also

References

  1. Weinberg, Steven (1995), The Quantum Theory of Fields, vol. 1, Cambridge University Press, p. 358 (380 in polish edition), ISBN 0-521-55001-7
Richard Feynman
Career
Works
Family
Related
Stub icon

This quantum mechanics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: