(Redirected from Dirac slash )
Notation for contractions with gamma matrices
In the study of Dirac fields in quantum field theory , Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation ). If A is a covariant vector (i.e., a 1-form ),
A
/
=
d
e
f
γ
0
A
0
+
γ
1
A
1
+
γ
2
A
2
+
γ
3
A
3
{\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{0}A_{0}+\gamma ^{1}A_{1}+\gamma ^{2}A_{2}+\gamma ^{3}A_{3}}
where γ are the gamma matrices . Using the Einstein summation notation , the expression is simply
A
/
=
d
e
f
γ
μ
A
μ
{\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{\mu }A_{\mu }}
.
Identities
Using the anticommutators of the gamma matrices, one can show that for any
a
μ
{\displaystyle a_{\mu }}
and
b
μ
{\displaystyle b_{\mu }}
,
a
/
a
/
=
a
μ
a
μ
⋅
I
4
=
a
2
⋅
I
4
a
/
b
/
+
b
/
a
/
=
2
a
⋅
b
⋅
I
4
.
{\displaystyle {\begin{aligned}{a\!\!\!/}{a\!\!\!/}=a^{\mu }a_{\mu }\cdot I_{4}=a^{2}\cdot I_{4}\\{a\!\!\!/}{b\!\!\!/}+{b\!\!\!/}{a\!\!\!/}=2a\cdot b\cdot I_{4}.\end{aligned}}}
where
I
4
{\displaystyle I_{4}}
is the identity matrix in four dimensions.
In particular,
∂
/
2
=
∂
2
⋅
I
4
.
{\displaystyle {\partial \!\!\!/}^{2}=\partial ^{2}\cdot I_{4}.}
Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products . For example,
γ
μ
a
/
γ
μ
=
−
2
a
/
γ
μ
a
/
b
/
γ
μ
=
4
a
⋅
b
⋅
I
4
γ
μ
a
/
b
/
c
/
γ
μ
=
−
2
c
/
b
/
a
/
γ
μ
a
/
b
/
c
/
d
/
γ
μ
=
2
(
d
/
a
/
b
/
c
/
+
c
/
b
/
a
/
d
/
)
tr
(
a
/
b
/
)
=
4
a
⋅
b
tr
(
a
/
b
/
c
/
d
/
)
=
4
[
(
a
⋅
b
)
(
c
⋅
d
)
−
(
a
⋅
c
)
(
b
⋅
d
)
+
(
a
⋅
d
)
(
b
⋅
c
)
]
tr
(
a
/
γ
μ
b
/
γ
ν
)
=
4
[
a
μ
b
ν
+
a
ν
b
μ
−
η
μ
ν
(
a
⋅
b
)
]
tr
(
γ
5
a
/
b
/
c
/
d
/
)
=
4
i
ε
μ
ν
λ
σ
a
μ
b
ν
c
λ
d
σ
tr
(
γ
μ
a
/
γ
ν
)
=
0
tr
(
γ
5
a
/
b
/
)
=
0
tr
(
γ
0
(
a
/
+
m
)
γ
0
(
b
/
+
m
)
)
=
8
a
0
b
0
−
4
(
a
.
b
)
+
4
m
2
tr
(
(
a
/
+
m
)
γ
μ
(
b
/
+
m
)
γ
ν
)
=
4
[
a
μ
b
ν
+
a
ν
b
μ
−
η
μ
ν
(
(
a
⋅
b
)
−
m
2
)
]
tr
(
a
/
1
.
.
.
a
/
2
n
)
=
tr
(
a
/
2
n
.
.
.
a
/
1
)
tr
(
a
/
1
.
.
.
a
/
2
n
+
1
)
=
0
{\displaystyle {\begin{aligned}\gamma _{\mu }{a\!\!\!/}\gamma ^{\mu }&=-2{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}\gamma ^{\mu }&=4a\cdot b\cdot I_{4}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}\gamma ^{\mu }&=-2{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}\gamma ^{\mu }&=2({d\!\!\!/}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}+{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}{d\!\!\!/})\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/})&=4a\cdot b\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4\left\\\operatorname {tr} ({a\!\!\!/}{\gamma ^{\mu }}{b\!\!\!/}{\gamma ^{\nu }})&=4\left\\\operatorname {tr} (\gamma _{5}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&=4i\varepsilon _{\mu \nu \lambda \sigma }a^{\mu }b^{\nu }c^{\lambda }d^{\sigma }\\\operatorname {tr} ({\gamma ^{\mu }}{a\!\!\!/}{\gamma ^{\nu }})&=0\\\operatorname {tr} ({\gamma ^{5}}{a\!\!\!/}{b\!\!\!/})&=0\\\operatorname {tr} ({\gamma ^{0}}({a\!\!\!/}+m){\gamma ^{0}}({b\!\!\!/}+m))&=8a^{0}b^{0}-4(a.b)+4m^{2}\\\operatorname {tr} (({a\!\!\!/}+m){\gamma ^{\mu }}({b\!\!\!/}+m){\gamma ^{\nu }})&=4\left\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n})&=\operatorname {tr} ({a\!\!\!/}_{2n}...{a\!\!\!/}_{1})\\\operatorname {tr} ({a\!\!\!/}_{1}...{a\!\!\!/}_{2n+1})&=0\end{aligned}}}
where:
ε
μ
ν
λ
σ
{\displaystyle \varepsilon _{\mu \nu \lambda \sigma }}
is the Levi-Civita symbol
η
μ
ν
{\displaystyle \eta ^{\mu \nu }}
is the Minkowski metric
m
{\displaystyle m}
is a scalar.
With four-momentum
This section uses the (+ − − −) metric signature . Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum : using the Dirac basis for the gamma matrices,
γ
0
=
(
I
0
0
−
I
)
,
γ
i
=
(
0
σ
i
−
σ
i
0
)
{\displaystyle \gamma ^{0}={\begin{pmatrix}I&0\\0&-I\end{pmatrix}},\quad \gamma ^{i}={\begin{pmatrix}0&\sigma ^{i}\\-\sigma ^{i}&0\end{pmatrix}}\,}
as well as the definition of contravariant four-momentum in natural units ,
p
μ
=
(
E
,
p
x
,
p
y
,
p
z
)
{\displaystyle p^{\mu }=\left(E,p_{x},p_{y},p_{z}\right)\,}
we see explicitly that
p
/
=
γ
μ
p
μ
=
γ
0
p
0
−
γ
i
p
i
=
[
p
0
0
0
−
p
0
]
−
[
0
σ
i
p
i
−
σ
i
p
i
0
]
=
[
E
−
σ
→
⋅
p
→
σ
→
⋅
p
→
−
E
]
.
{\displaystyle {\begin{aligned}{p\!\!/}&=\gamma ^{\mu }p_{\mu }=\gamma ^{0}p^{0}-\gamma ^{i}p^{i}\\&={\begin{bmatrix}p^{0}&0\\0&-p^{0}\end{bmatrix}}-{\begin{bmatrix}0&\sigma ^{i}p^{i}\\-\sigma ^{i}p^{i}&0\end{bmatrix}}\\&={\begin{bmatrix}E&-{\vec {\sigma }}\cdot {\vec {p}}\\{\vec {\sigma }}\cdot {\vec {p}}&-E\end{bmatrix}}.\end{aligned}}}
Similar results hold in other bases, such as the Weyl basis .
See also
References
Weinberg, Steven (1995), The Quantum Theory of Fields , vol. 1, Cambridge University Press, p. 358 (380 in polish edition), ISBN 0-521-55001-7
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑