Misplaced Pages

Rational normal scroll

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Directrix of a rational normal scroll) Algebraic geometry
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Rational normal scroll" – news · newspapers · books · scholar · JSTOR (November 2021)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2021) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In mathematics, a rational normal scroll is a ruled surface of degree n in projective space of dimension n + 1. Here "rational" means birational to projective space, "scroll" is an old term for ruled surface, and "normal" refers to projective normality (not normal schemes).

A non-degenerate irreducible surface of degree m – 1 in P is either a rational normal scroll or the Veronese surface.

Construction

In projective space of dimension m + n + 1 choose two complementary linear subspaces of dimensions m > 0 and n > 0. Choose rational normal curves in these two linear subspaces, and choose an isomorphism φ between them. Then the rational normal surface consists of all lines joining the points x and φ(x). In the degenerate case when one of m or n is 0, the rational normal scroll becomes a cone over a rational normal curve. If m < n then the rational normal curve of degree m is uniquely determined by the rational normal scroll and is called the directrix of the scroll.

References

Category: