Misplaced Pages

Dittert conjecture

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Dittert conjecture, or Dittert–Hajek conjecture, is a mathematical hypothesis in combinatorics concerning the maximum achieved by a particular function ϕ {\displaystyle \phi } of matrices with real, nonnegative entries satisfying a summation condition. The conjecture is due to Eric Dittert and (independently) Bruce Hajek.

Let A = [ a i j ] {\displaystyle A=} be a square matrix of order n {\displaystyle n} with nonnegative entries and with i = 1 n ( j = 1 n a i j ) = n {\textstyle \sum _{i=1}^{n}\left(\sum _{j=1}^{n}a_{ij}\right)=n} . Its permanent is defined as per ( A ) = σ S n i = 1 n a i , σ ( i ) , {\displaystyle \operatorname {per} (A)=\sum _{\sigma \in S_{n}}\prod _{i=1}^{n}a_{i,\sigma (i)},} where the sum extends over all elements σ {\displaystyle \sigma } of the symmetric group.

The Dittert conjecture asserts that the function ϕ ( A ) {\displaystyle \operatorname {\phi } (A)} defined by i = 1 n ( j = 1 n a i j ) + j = 1 n ( i = 1 n a i j ) per ( A ) {\textstyle \prod _{i=1}^{n}\left(\sum _{j=1}^{n}a_{ij}\right)+\prod _{j=1}^{n}\left(\sum _{i=1}^{n}a_{ij}\right)-\operatorname {per} (A)} is (uniquely) maximized when A = ( 1 / n ) J n {\displaystyle A=(1/n)J_{n}} , where J n {\displaystyle J_{n}} is defined to be the square matrix of order n {\displaystyle n} with all entries equal to 1.

References

  1. ^ Hogben, Leslie, ed. (2014). Handbook of Linear Algebra (2nd ed.). CRC Press. pp. 43–8. ISBN 978-1-4665-0729-6.
  2. ^ Cheon, Gi-Sang; Wanless, Ian M. (15 February 2012). "Some results towards the Dittert conjecture on permanents". Linear Algebra and Its Applications. 436 (4): 791–801. doi:10.1016/j.laa.2010.08.041. hdl:1885/28596.
  3. Eric R. Dittert at the Mathematics Genealogy Project
  4. Bruce Edward Hajek at the Mathematics Genealogy Project


Stub icon

This combinatorics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: