Misplaced Pages

Dual graviton

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Hypothetical particle found in supergravity
Dual graviton
CompositionElementary particle
FamilyGauge boson
InteractionsGravitation
StatusHypothetical
AntiparticleSelf
Theorized2000s
Electric chargee
Spin2
String theory
Fundamental objects
Perturbative theory
Non-perturbative results
Phenomenology
Mathematics
Related concepts
Theorists
Beyond the Standard Model
Simulated Large Hadron Collider CMS particle detector data depicting a Higgs boson produced by colliding protons decaying into hadron jets and electrons
Standard Model
Evidence
Theories
Supersymmetry
Quantum gravity
Experiments

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of eleven-dimensional supergravity.

The dual graviton was first hypothesized in 1980. It was theoretically modeled in 2000s, which was then predicted in eleven-dimensional mathematics of SO(8) supergravity in the framework of electric-magnetic duality. It again emerged in the E11 generalized geometry in eleven dimensions, and the E7 generalized vielbein-geometry in eleven dimensions. While there is no local coupling between graviton and dual graviton, the field introduced by dual graviton may be coupled to a BF model as non-local gravitational fields in extra dimensions.

A massive dual gravity of Ogievetsky–Polubarinov model can be obtained by coupling the dual graviton field to the curl of its own energy-momentum tensor.

The previously mentioned theories of dual graviton are in flat space. In de Sitter and anti-de Sitter spaces (A)dS, the massless dual graviton exhibits less gauge symmetries dynamics compared with those of Curtright field in flat space, hence the mixed-symmetry field propagates in more degrees of freedom. However, the dual graviton in (A)dS transforms under GL(D) representation, which is identical to that of massive dual graviton in flat space. This apparent paradox can be resolved using the unfolding technique in Brink, Metsaev, and Vasiliev conjecture. For the massive dual graviton in (A)dS, the flat limit is clarified after expressing dual field in terms of the Stueckelberg coupling of a massless spin-2 field with a Proca field.

Dual linearized gravity

The dual formulations of linearized gravity are described by a mixed Young symmetry tensor T λ 1 λ 2 λ D 3 μ {\displaystyle T_{\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}\mu }} , the so-called dual graviton, in any spacetime dimension D > 4 with the following characters:

T λ 1 λ 2 λ D 3 μ = T [ λ 1 λ 2 λ D 3 ] μ , {\displaystyle T_{\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}\mu }=T_{\mu },}
T [ λ 1 λ 2 λ D 3 μ ] = 0. {\displaystyle T_{}=0.}

where square brackets show antisymmetrization.

For 5-D spacetime, the spin-2 dual graviton is described by the Curtright field T α β γ {\displaystyle T_{\alpha \beta \gamma }} . The symmetry properties imply that

T α β γ = T [ α β ] γ , {\displaystyle T_{\alpha \beta \gamma }=T_{\gamma },}
T [ α β ] γ + T [ β γ ] α + T [ γ α ] β = 0. {\displaystyle T_{\gamma }+T_{\alpha }+T_{\beta }=0.}

The Lagrangian action for the spin-2 dual graviton T λ 1 λ 2 μ {\displaystyle T_{\lambda _{1}\lambda _{2}\mu }} in 5-D spacetime, the Curtright field, becomes

L d u a l = 1 12 ( F [ α β γ ] δ F [ α β γ ] δ 3 F [ α β ξ ] ξ F [ α β λ ] λ ) , {\displaystyle {\cal {L}}_{\rm {dual}}=-{\frac {1}{12}}\left(F_{\delta }F^{\delta }-3F_{}{}^{\xi }F^{}{}_{\lambda }\right),}

where F α β γ δ {\displaystyle F_{\alpha \beta \gamma \delta }} is defined as

F [ α β γ ] δ = α T [ β γ ] δ + β T [ γ α ] δ + γ T [ α β ] δ , {\displaystyle F_{\delta }=\partial _{\alpha }T_{\delta }+\partial _{\beta }T_{\delta }+\partial _{\gamma }T_{\delta },}

and the gauge symmetry of the Curtright field is

δ σ , α T [ α β ] γ = 2 ( [ α σ β ] γ + [ α α β ] γ γ α α β ) . {\displaystyle \delta _{\sigma ,\alpha }T_{\gamma }=2(\partial _{\gamma }+\partial _{\gamma }-\partial _{\gamma }\alpha _{\alpha \beta }).}

The dual Riemann curvature tensor of the dual graviton is defined as follows:

E [ α β δ ] [ ε γ ] 1 2 ( ε F [ α β δ ] γ γ F [ α β δ ] ε ) , {\displaystyle E_{}\equiv {\frac {1}{2}}(\partial _{\varepsilon }F_{\gamma }-\partial _{\gamma }F_{\varepsilon }),}

and the dual Ricci curvature tensor and scalar curvature of the dual graviton become, respectively

E [ α β ] γ = g ε δ E [ α β δ ] [ ε γ ] , {\displaystyle E_{\gamma }=g^{\varepsilon \delta }E_{},}
E α = g β γ E [ α β ] γ . {\displaystyle E_{\alpha }=g^{\beta \gamma }E_{\gamma }.}

They fulfill the following Bianchi identities

α ( E [ α β ] γ + g γ [ α E β ] ) = 0 , {\displaystyle \partial _{\alpha }(E^{\gamma }+g^{\gamma })=0,}

where g α β {\displaystyle g^{\alpha \beta }} is the 5-D spacetime metric.

Massive dual gravity

In 4-D, the Lagrangian of the spinless massive version of the dual gravity is

L d u a l , m a s s i v e s p i n l e s s = 1 2 u + 1 2 ( v g u ) 2 + 1 3 g ( v g u ) 3 F 3 F 2 ( 1 , 1 2 , 3 2 ; 2 , 5 2 ; 4 g 2 ( v g u ) 2 ) , {\displaystyle {\mathcal {L_{\rm {dual,massive}}^{\rm {spinless}}}}=-{\frac {1}{2}}u+{\frac {1}{2}}(v-gu)^{2}+{\frac {1}{3}}g(v-gu)^{3}\sideset {_{3}}{_{2}}F(1,{\frac {1}{2}},{\frac {3}{2}};2,{\frac {5}{2}};-4g^{2}(v-gu)^{2}),}

where V μ = 1 6 ϵ μ α β γ V α β γ   , v = V μ V μ and   u = μ V μ . {\displaystyle V^{\mu }={\frac {1}{6}}\epsilon ^{\mu \alpha \beta \gamma }V_{\alpha \beta \gamma }~,v=V_{\mu }V^{\mu }{\text{and}}~u=\partial _{\mu }V^{\mu }.} The coupling constant g / m {\displaystyle g/m} appears in the equation of motion to couple the trace of the conformally improved energy momentum tensor θ {\displaystyle \theta } to the field as in the following equation

( + m 2 ) V μ = g m μ θ . {\displaystyle \left(\Box +m^{2}\right)V_{\mu }={\frac {g}{m}}\partial _{\mu }\theta .}

And for the spin-2 massive dual gravity in 4-D, the Lagrangian is formulated in terms of the Hessian matrix that also constitutes Horndeski theory (Galileons/massive gravity) through

det ( δ ν μ + g m K ν μ ) = 1 1 2 ( g / m ) 2 K α β K β α + 1 3 ( g / m ) 3 K α β K β γ K γ α + 1 8 ( g / m ) 4 [ ( K α β K β α ) 2 2 K α β K β γ K γ δ K δ α ] , {\displaystyle {\text{det}}(\delta _{\nu }^{\mu }+{\frac {g}{m}}K_{\nu }^{\mu })=1-{\frac {1}{2}}(g/m)^{2}K_{\alpha }^{\beta }K_{\beta }^{\alpha }+{\frac {1}{3}}(g/m)^{3}K_{\alpha }^{\beta }K_{\beta }^{\gamma }K_{\gamma }^{\alpha }+{\frac {1}{8}}(g/m)^{4}\left,}

where K μ ν = 3 α T [ β γ ] μ ϵ α β γ ν {\displaystyle K_{\mu }^{\nu }=3\partial _{\alpha }T_{\mu }\epsilon ^{\alpha \beta \gamma \nu }} .

So the zeroth interaction part, i.e., the third term in the Lagrangian, can be read as K α β θ β α {\displaystyle K_{\alpha }^{\beta }\theta _{\beta }^{\alpha }} so the equation of motion becomes

( + m 2 ) T [ α β ] γ = g m P α β γ , λ μ ν λ θ μ ν , {\displaystyle \left(\Box +m^{2}\right)T_{\gamma }={\frac {g}{m}}P_{\alpha \beta \gamma ,\lambda \mu \nu }\partial ^{\lambda }\theta ^{\mu \nu },}

where the P α β γ , λ μ ν = 2 ϵ α β λ μ η γ ν + ϵ α γ λ μ η β ν ϵ β γ λ μ η α ν {\displaystyle P_{\alpha \beta \gamma ,\lambda \mu \nu }=2\epsilon _{\alpha \beta \lambda \mu }\eta _{\gamma \nu }+\epsilon _{\alpha \gamma \lambda \mu }\eta _{\beta \nu }-\epsilon _{\beta \gamma \lambda \mu }\eta _{\alpha \nu }} is Young symmetrizer of such SO(2) theory.

For solutions of the massive theory in arbitrary N-D, i.e., Curtright field T [ λ 1 λ 2 . . . λ N 3 ] μ {\displaystyle T_{\mu }} , the symmetrizer becomes that of SO(N-2).

Dual graviton coupling with BF theory

Dual gravitons have interaction with topological BF model in D = 5 through the following Lagrangian action

S L = d 5 x ( L d u a l + L B F ) . {\displaystyle S_{\rm {L}}=\int d^{5}x({\cal {L}}_{\rm {dual}}+{\cal {L}}_{\rm {BF}}).}

where

L B F = T r [ B F ] {\displaystyle {\cal {L}}_{\rm {BF}}=Tr}

Here, F d A R a b {\displaystyle \mathbf {F} \equiv d\mathbf {A} \sim R_{ab}} is the curvature form, and B e a e b {\displaystyle \mathbf {B} \equiv e^{a}\wedge e^{b}} is the background field.

In principle, it should similarly be coupled to a BF model of gravity as the linearized Einstein–Hilbert action in D > 4:

S B F = d 5 x L B F S E H = 1 2 d 5 x R g . {\displaystyle S_{\rm {BF}}=\int d^{5}x{\cal {L}}_{\rm {BF}}\sim S_{\rm {EH}}={1 \over 2}\int \mathrm {d} ^{5}xR{\sqrt {-g}}.}

where g = det ( g μ ν ) {\displaystyle g=\det(g_{\mu \nu })} is the determinant of the metric tensor matrix, and R {\displaystyle R} is the Ricci scalar.

Dual gravitoelectromagnetism

In similar manner while we define gravitoelectromagnetism for the graviton, we can define electric and magnetic fields for the dual graviton. There are the following relation between the gravitoelectric field E a b [ h a b ] {\displaystyle E_{ab}} and gravitomagnetic field B a b [ h a b ] {\displaystyle B_{ab}} of the graviton h a b {\displaystyle h_{ab}} and the gravitoelectric field E a b [ T a b c ] {\displaystyle E_{ab}} and gravitomagnetic field B a b [ T a b c ] {\displaystyle B_{ab}} of the dual graviton T a b c {\displaystyle T_{abc}} :

B a b [ T a b c ] = E a b [ h a b ] {\displaystyle B_{ab}=E_{ab}}
E a b [ T a b c ] = B a b [ h a b ] {\displaystyle E_{ab}=-B_{ab}}

and scalar curvature R {\displaystyle R} with dual scalar curvature E {\displaystyle E} :

E = R {\displaystyle E=\star R}
R = E {\displaystyle R=-\star E}

where {\displaystyle \star } denotes the Hodge dual.

Dual graviton in conformal gravity

The free (4,0) conformal gravity in D = 6 is defined as

S = d 6 x g C A B C D C A B C D , {\displaystyle {\mathcal {S}}=\int \mathrm {d} ^{6}x{\sqrt {-g}}C_{ABCD}C^{ABCD},}

where C A B C D {\displaystyle C_{ABCD}} is the Weyl tensor in D = 6. The free (4,0) conformal gravity can be reduced to the graviton in the ordinary space, and the dual graviton in the dual space in D = 4.

It is easy to notice the similarity between the Lanczos tensor, that generates the Weyl tensor in geometric theories of gravity, and Curtright tensor, particularly their shared symmetry properties of the linearized spin connection in Einstein's theory. However, Lanczos tensor is a tensor of geometry in D=4, meanwhile Curtright tensor is a field tensor in arbitrary dimensions.

See also

References

  1. ^ Hull, C. M. (2001). "Duality in Gravity and Higher Spin Gauge Fields". Journal of High Energy Physics. 2001 (9): 27. arXiv:hep-th/0107149. Bibcode:2001JHEP...09..027H. doi:10.1088/1126-6708/2001/09/027.
  2. ^ Bekaert, X.; Boulanger, N.; Henneaux, M. (2003). "Consistent deformations of dual formulations of linearized gravity: A no-go result". Physical Review D. 67 (4): 044010. arXiv:hep-th/0210278. Bibcode:2003PhRvD..67d4010B. doi:10.1103/PhysRevD.67.044010. S2CID 14739195.
  3. ^ de Wit, B.; Nicolai, H. (2013). "Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions". Journal of High Energy Physics. 2013 (5): 77. arXiv:1302.6219. Bibcode:2013JHEP...05..077D. doi:10.1007/JHEP05(2013)077. S2CID 119201330.
  4. Curtright, T. (1985). "Generalised Gauge Fields". Physics Letters B. 165 (4–6): 304. Bibcode:1985PhLB..165..304C. doi:10.1016/0370-2693(85)91235-3.
  5. West, P. (2012). "Generalised geometry, eleven dimensions and E11". Journal of High Energy Physics. 2012 (2): 18. arXiv:1111.1642. Bibcode:2012JHEP...02..018W. doi:10.1007/JHEP02(2012)018. S2CID 119240022.
  6. Godazgar, H.; Godazgar, M.; Nicolai, H. (2014). "Generalised geometry from the ground up". Journal of High Energy Physics. 2014 (2): 75. arXiv:1307.8295. Bibcode:2014JHEP...02..075G. doi:10.1007/JHEP02(2014)075.
  7. ^ Bizdadea, C.; Cioroianu, E. M.; Danehkar, A.; Iordache, M.; Saliu, S. O.; Sararu, S. C. (2009). "Consistent interactions of dual linearized gravity in D = 5: couplings with a topological BF model". European Physical Journal C. 63 (3): 491–519. arXiv:0908.2169. Bibcode:2009EPJC...63..491B. doi:10.1140/epjc/s10052-009-1105-0. S2CID 15873396.
  8. Ogievetsky, V. I; Polubarinov, I. V (1965-11-01). "Interacting field of spin 2 and the einstein equations". Annals of Physics. 35 (2): 167–208. Bibcode:1965AnPhy..35..167O. doi:10.1016/0003-4916(65)90077-1. ISSN 0003-4916.
  9. ^ Alshal, H.; Curtright, T. L. (2019-09-10). "Massive dual gravity in N spacetime dimensions". Journal of High Energy Physics. 2019 (9): 63. arXiv:1907.11537. Bibcode:2019JHEP...09..063A. doi:10.1007/JHEP09(2019)063. ISSN 1029-8479. S2CID 198953238.
  10. ^ Curtright, T. L.; Alshal, H. (2019-10-01). "Massive dual spin 2 revisited". Nuclear Physics B. 948: 114777. arXiv:1907.11532. Bibcode:2019NuPhB.94814777C. doi:10.1016/j.nuclphysb.2019.114777. ISSN 0550-3213. S2CID 198953158.
  11. ^ Boulanger, N.; Campoleoni, A.; Cortese, I. (July 2018). "Dual actions for massless, partially-massless and massive gravitons in (A)dS". Physics Letters B. 782: 285–290. arXiv:1804.05588. Bibcode:2018PhLB..782..285B. doi:10.1016/j.physletb.2018.05.046. S2CID 54826796.
  12. Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas (2016-06-21). "Note about a pure spin-connection formulation of general relativity and spin-2 duality in (A)dS". Physical Review D. 93 (12): 124047. arXiv:1512.09060. Bibcode:2016PhRvD..93l4047B. doi:10.1103/PhysRevD.93.124047. ISSN 2470-0010. S2CID 55583084.
  13. Brink, L.; Metsaev, R.R.; Vasiliev, M.A. (October 2000). "How massless are massless fields in AdS". Nuclear Physics B. 586 (1–2): 183–205. arXiv:hep-th/0005136. Bibcode:2000NuPhB.586..183B. doi:10.1016/S0550-3213(00)00402-8. S2CID 119512854.
  14. Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas (May 2017). "Mixed-symmetry fields in de Sitter space: a group theoretical glance". Journal of High Energy Physics. 2017 (5): 81. arXiv:1612.08166. Bibcode:2017JHEP...05..081B. doi:10.1007/JHEP05(2017)081. ISSN 1029-8479. S2CID 119185373.
  15. ^ Danehkar, A. (2019). "Electric-magnetic duality in gravity and higher-spin fields". Frontiers in Physics. 6: 146. Bibcode:2019FrP.....6..146D. doi:10.3389/fphy.2018.00146.
  16. Curtright, Thomas L. (2019-10-01). "Massive dual spinless fields revisited". Nuclear Physics B. 948: 114784. arXiv:1907.11530. Bibcode:2019NuPhB.94814784C. doi:10.1016/j.nuclphysb.2019.114784. ISSN 0550-3213. S2CID 198953144.
  17. Henneaux, M.; Teitelboim, C. (2005). "Duality in linearized gravity". Physical Review D. 71 (2): 024018. arXiv:gr-qc/0408101. Bibcode:2005PhRvD..71b4018H. doi:10.1103/PhysRevD.71.024018. S2CID 119022015.
  18. ^ Henneaux, M., "E10 and gravitational duality" https://www.theorie.physik.uni-muenchen.de/activities/workshops/archive_workshops_conferences/jointerc_2014/henneaux.pdf
  19. Hull, C. M. (2000). "Symmetries and Compactifications of (4,0) Conformal Gravity". Journal of High Energy Physics. 2000 (12): 007. arXiv:hep-th/0011215. Bibcode:2000JHEP...12..007H. doi:10.1088/1126-6708/2000/12/007. S2CID 18326976.
  20. Bampi, Franco; Caviglia, Giacomo (April 1983). "Third-order tensor potentials for the Riemann and Weyl tensors". General Relativity and Gravitation. 15 (4): 375–386. Bibcode:1983GReGr..15..375B. doi:10.1007/BF00759166. ISSN 0001-7701. S2CID 122782358.
Particles in physics
Elementary
Fermions
Quarks
Leptons
Bosons
Gauge
Scalar
Ghost fields
Hypothetical
Superpartners
Gauginos
Others
Others
Composite
Hadrons
Baryons
Mesons
Exotic hadrons
Others
Hypothetical
Baryons
Mesons
Others
Quasiparticles
Lists
Related
Physics portal
Quantum gravity
Central concepts
Toy models
Quantum field theory
in curved spacetime
Black holes
Approaches
String theory
Canonical quantum gravity
Euclidean quantum gravity
Others
Applications
See also: Template:Quantum mechanics topics
String theory
Background
Theory
String duality
Particles and fields
Branes
Conformal field theory
Gauge theory
Geometry
Supersymmetry
Holography
M-theory
String theorists
Categories: