Misplaced Pages

Dynamical decoupling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Control technique for improving qubit coherence in quantum computing

Dynamical decoupling (DD) is an open-loop quantum control technique employed in quantum computing to suppress decoherence by taking advantage of rapid, time-dependent control modulation. In its simplest form, DD is implemented by periodic sequences of instantaneous control pulses, whose net effect is to approximately average the unwanted system-environment coupling to zero. Different schemes exist for designing DD protocols that use realistic bounded-strength control pulses, as well as for achieving high-order error suppression, and for making DD compatible with quantum gates. In spin systems in particular, commonly used protocols for dynamical decoupling include the Carr-Purcell and the Carr-Purcell-Meiboom-Gill (CPMG) schemes. They are based on the Hahn spin echo technique of applying periodic pulses to enable refocusing and hence extend the coherence times of qubits.

Periodic repetition of suitable high-order DD sequences may be employed to engineer a 'stroboscopic saturation' of qubit coherence, or coherence plateau, that can persist in the presence of realistic noise spectra and experimental control imperfections. This permits device-independent, high-fidelity data storage for computationally useful periods with bounded error probability.

Dynamical decoupling has also been studied in a classical context for two coupled pendulums whose oscillation frequencies are modulated in time.

References

  1. Viola, L.; Lloyd, S. (1998). "Dynamical suppression of decoherence in two-state quantum systems". Physical Review A. 58 (4): 2733–2744. arXiv:quant-ph/9803057. Bibcode:1998PhRvA..58.2733V. doi:10.1103/PhysRevA.58.2733. S2CID 34939261.
  2. Viola, L.; Knill, E.; Lloyd, S. (1999). "Dynamical Decoupling of Open Quantum Systems". Physical Review Letters. 82 (12): 2417–2421. arXiv:quant-ph/9809071. Bibcode:1999PhRvL..82.2417V. doi:10.1103/PhysRevLett.82.2417. S2CID 2566091.
  3. Viola, L.; Knill, E. (2003). "Robust Dynamical Decoupling of Quantum Systems with Bounded Controls". Physical Review Letters. 90 (3): 037901. arXiv:quant-ph/0208056. Bibcode:2003PhRvL..90c7901V. doi:10.1103/PhysRevLett.90.037901. PMID 12570525. S2CID 32354220.
  4. Khodjasteh, K.; Lidar, D. (2005). "Fault-Tolerant Quantum Dynamical Decoupling". Physical Review Letters. 95 (18): 180501. arXiv:quant-ph/0408128. Bibcode:2005PhRvL..95r0501K. doi:10.1103/PhysRevLett.95.180501. PMID 16383882. S2CID 9754216.
  5. Uhrig, G. S. (2007). "Keeping a Quantum Bit Alive by Optimized π-Pulse Sequences". Physical Review Letters. 98 (10): 100504. arXiv:quant-ph/0609203. Bibcode:2007PhRvL..98j0504U. doi:10.1103/PhysRevLett.98.100504. PMID 17358521. S2CID 14729824.
  6. Viola, L.; Lloyd, S.; Knill, E. (1999). "Universal Control of Decoupled Quantum Systems". Physical Review Letters. 83 (23): 4888–4891. arXiv:quant-ph/9906094. Bibcode:1999PhRvL..83.4888V. doi:10.1103/PhysRevLett.83.4888. S2CID 43014936.
  7. West, J. R.; Lidar, D. A.; Fong, B. H.; Gyure, M. F. (2011). "High Fidelity Quantum Gates via Dynamical Decoupling". Physical Review Letters. 105 (23): 230503. arXiv:0911.2398. Bibcode:2010PhRvL.105w0503W. doi:10.1103/PhysRevLett.105.230503. PMID 21231440. S2CID 18535780.
  8. Yang, W.; Wang, Z. Y.; Liu, R. B. (2010). "Preserving qubit coherence by dynamical decoupling". Frontiers of Physics. 6 (1): 2–14. arXiv:1007.0623. Bibcode:2011FrPhy...6....2Y. doi:10.1007/s11467-010-0113-8. S2CID 118681892.
  9. Carr, H. Y.; Purcell, E. M. (1954-05-01). "Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments". Physical Review. 94 (3): 630–638. Bibcode:1954PhRv...94..630C. doi:10.1103/PhysRev.94.630.
  10. Meiboom, S.; Gill, D. (1958-08-01). "Modified Spin-Echo Method for Measuring Nuclear Relaxation Times". Review of Scientific Instruments. 29 (8): 688–691. Bibcode:1958RScI...29..688M. doi:10.1063/1.1716296. ISSN 0034-6748.
  11. Khodjasteh, K.; Sastrawan, J.; Hayes, D.; Green, T. J.; Biercuk, M. J.; Viola, L. (2013). "Designing a practical high-fidelity long-time quantum memory". Nature Communications. 4: 2045. arXiv:1206.6087. Bibcode:2013NatCo...4.2045K. doi:10.1038/ncomms3045. PMID 23784079. S2CID 205317873.
  12. Salerno, Grazia; Carusotto, Iacopo (2014). "Dynamical decoupling and dynamical isolation in temporally modulated coupled pendulums". EPL. 106 (2): 24002. arXiv:1401.3978. Bibcode:2014EL....10624002S. doi:10.1209/0295-5075/106/24002. ISSN 0295-5075. S2CID 119236165.
Stub icon

This quantum mechanics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: