Misplaced Pages

Ford EcoBoost engine

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Ecoboost) Series of turbocharged, direct-injection gasoline engines

Reciprocating internal combustion engine
Ford EcoBoost engine
Overview
ManufacturerFord
Also calledTwinForce (obsolete)
EcoBoost SCTi
GTDi
Production2009–present
Layout
ConfigurationI3, I4 and 60° V6
DisplacementV6 3.5: 3496 cc (213 CID)
V6 3.0: 2967 cc (181 CID)
V6 2.7: 2694 cc (164 CID)
I4 2.3: 2261 cc (138 CID)
I4 2.0: 1999 cc (122 CID)
I4 1.6: 1596 cc (97 CID)
I4 1.5: 1500 cc (92 CID)
I3 1.5: 1497 cc (91 CID)
I3 1.0: 995 cc (60.44 CID)
Cylinder boreV6 3.5: 3.64 in (92.5 mm)
V6 3.0: 3.36 in (85.3 mm)
V6 2.7: 3.30 in (83 mm)
I4 2.3: 3.45 in (87.55 mm)
3.30 in (84 mm)
I4 2.0: 3.4 in (87.5 mm)
I4 1.6: 3.1 in (79.0 mm)
I3 1.5: 3.31 in (84 mm)
I3 1.0: 2.83 in (71.9 mm)
Piston strokeV6 3.5: 3.41 in (86.7 mm)
V6 3.0: 3.39 in (86 mm)
V6 2.7: 3.30 in (83 mm)
I4 2.3: 3.7 in (94.0 mm)
4.0 in (102 mm)
I4 2.0: 3.27 in (83.1 mm)
I4 1.6: 3.2 in (81.4 mm)
I3 1.5: 3.54 in (90 mm)
I3 1.0: 3.2 in (82 mm)
Cylinder block materialV6 2.7: Compacted graphite iron
I3 1.0 & 1.1: Cast iron
All others: Aluminum
Cylinder head materialAluminum
ValvetrainDOHC with direct acting mechanical buckets or roller finger followers
Variable camshaft timing
Compression ratioV6 3.5: 10.0:1(10.5:1 MY2017)
V6 3.0: 9.5:1
V6 2.7: 10.3:1
I4 2.3: 9.5:1, 10.6:1
I4 2.0: 10.0:1
I4 1.6: 10.0:1
I3 1.5: 9.7:1
Combustion
TurbochargerV6: Dual Borg Warner K03 low inertia integrated turbo system
I4 2.3: Honeywell Garrett Twin scroll MGT2260SZ (Mustang Ecoboost)
I4 2.0: Borg Warner K03 low inertia integrated turbo system
I4 1.6: Borg Warner KP39 low inertia turbo
I3 1.5: Continental RAAX low-inertia turbocharger
Fuel systemGasoline direct injection or dual injection
ManagementV6: Bosch
I4 2.0: Bosch MED17 with CAN-Bus and individual cylinder knock control
I4 1.6: Bosch MED17 with CAN-Bus and individual cylinder knock control
I3 1.5: Bosch MG1CS016 with CAN-Bus and individual cylinder knock control. FGEC software
Fuel typeGasoline
Oil systemWet sump
Cooling systemWater-cooled
Dimensions
Dry weightV6 3.5: 449 lbs (203 kg)
V6 3.0: 445 lbs (202 kg)
V6 2.7: 440 lbs (200 kg)
I4 2.0: 328 lbs(149 kg)
I4 1.6: 251 lbs (114 kg)
I3 1.0: 213 lbs (97 kg)
Chronology
Predecessor
Ford EcoBoost race car

EcoBoost is a series of turbocharged, direct-injection gasoline engines produced by Ford and originally co-developed by FEV Inc. (now FEV North America Inc.). EcoBoost engines are designed to deliver power and torque consistent with those of larger-displacement (cylinder volume) naturally aspirated engines, while achieving up to 20% better fuel efficiency and 15% fewer greenhouse emissions, according to Ford. The manufacturer sees the EcoBoost technology as less costly and more versatile than further developing or expanding the use of hybrid and diesel engine technologies. EcoBoost engines are broadly available across the Ford vehicle lineup.

Global production

EcoBoost gasoline direct-injection turbocharged engine technology adds 128 patents and patent applications to Ford's 4,618 active and thousands of pending US patents. Some of the costs of US development and production were assisted by the $5.9 billion Advanced Technology Vehicles Manufacturing Loan Program of the Department of Energy.

The V6 EcoBoost engines are being assembled at Cleveland Engine Plant No. 1 in Brook Park, Ohio. The 2.0-liter I4 EcoBoost engines were produced at the Ford Valencia Plant in Spain in 2009. The 1.6-liter I4 EcoBoost engines are assembled at the Ford Bridgend Engine Plant in the United Kingdom. The smaller 1000cc-displacement 3 cylinder EcoBoost engine is produced both at Ford Germany in Cologne and at Ford Romania in Craiova.

By 2012, the company planned to produce 750,000 EcoBoost units annually in the US and 1.3 million globally in the world market. Ford expected over 90% of its global vehicle lineup (includes North America) to offer EcoBoost engine technology by 2013. From the engine's beginning to November 2012, 500,000 Ford EcoBoost vehicles have been sold.

During Ford's ownership of Volvo (until 2010), it used the term PTDi (petrol turbocharged direct injection) for the 1.6 L I4 engine when introducing Volvo S60 concept and for the 2.0 L I4 engine when introducing Volvo XC60.

Safety issues

Ford has had to refund hundreds of customers worldwide because Ford EcoBoost engines in their vehicles have overheated and, in some cases, caused engine fires. In 2015, a South African man died after becoming trapped in his Ford Kuga after its 1.6-litre EcoBoost engine burst into flames. In 2017, Ford South Africa recalled all Kugas in the country for engine checks.

Engine family list

Name Family Displacement Year Features
EcoBoost 1.0 Fox 999 cc (61.0 cu in) 2012–present DOHC I3
Ti-VCT 1.1 Fox 1,084 cc (66.1 cu in) 2017–present DOHC I3
EcoBoost 1.5 Ford Sigma engine 1,500 cc (92 cu in) 2014–present DOHC I4
EcoBoost 1.5 Dragon 1,497 cc (91.4 cu in) 2017–present DOHC I3
EcoBoost 1.6 Ford Sigma engine 1,596 cc (97.4 cu in) 2010–present DOHC I4
EcoBoost 2.0 Mazda L engine 1,999 cc (122.0 cu in) 2010–2014 DOHC I4
EcoBoost 2.0 twin scroll Clean-sheet engine block 1,999 cc (122.0 cu in) 2015–present DOHC I4
EcoBoost 2.3 Mazda L engine 2,261 cc (138.0 cu in) 2015–2024 DOHC I4
EcoBoost 2.7 Nano 2,694 cc (164.4 cu in) 2015–present DOHC V6
EcoBoost 3.0 Nano 2,967 cc (181.1 cu in) 2016–present DOHC V6
EcoBoost 3.5 Cyclone 3,496 cc (213.3 cu in) 2010–present DOHC V6

Inline three-cylinder

1.0 L Fox

This section needs to be updated. The reason given is: Updated gen 2 Fox with reversed head flow and cylinder deactivation should be in a new section. Please help update this article to reflect recent events or newly available information. (October 2024)
Reciprocating internal combustion engine
1.0 L Ecoboost Fox I-3
Layout
ConfigurationInline-3
Displacement999 cc (61.0 cu in)
Cylinder bore71.9 mm (2.83 in)
Piston stroke82.0 mm (3.23 in)
Cylinder block materialCast iron
Cylinder head materialCast aluminum
Valvetrain12 valve DOHC
Valvetrain drive systemWet belt, later chain
Compression ratio10.0-10.5:1
Combustion
TurbochargerSingle Continental radial-axial
Fuel systemDirect injection
ManagementBosch MED17 Vitesco EMS2916 (MHEV)
Oil systemElectronically controlled variable displacement oil pump

Ford produces a 1.0 L turbocharged in-line three-cylinder engine for the EcoBoost family developed at Ford's Dunton Technical Centre in the UK. Production started in April 2012. The 1.0 was built initially in two versions: 74 kW (101 PS; 99 hp) and 88 to 92 kW (120 to 125 PS; 118 to 123 hp).

Both versions deliver a maximum of 170 N⋅m (130 lbf⋅ft) from 1,400 to 4,500 rpm, whereas higher performing versions can provide up to 200 N⋅m (150 lbf⋅ft) on overboost for 30 seconds, which makes for a broad torque curve when compared to a naturally aspirated gasoline engine. A 140 PS (100 kW; 140 hp) version has also been released in the Fiesta Red Edition and Black Edition (some markets), as well as the Focus ST-Line, with 210 N⋅m (155 lb⋅ft) of torque. The engine block is cast iron, which offers, in addition to the required strength, up to 50% faster warm-up than aluminum, at the expense of additional weight.

To quell the natural vibrations of a three-cylinder design, unspecified efforts have been made in the flywheel design to ensure satisfactorily smooth running without the use of energy sapping balance shafts. The 1.0L EcoBoost GTDI engine uses an oil-bathed timing belt, commonly known as a "wet belt".

The engine is packaged in an engine block with a footprint the size of an A4 sheet of paper. With the introduction of the face-lifted 2013 Ford Fiesta, Ford introduced a naturally aspirated version of 1.0 Fox engine. The two versions produce 65 hp (48 kW; 66 PS) and 80 hp (60 kW; 81 PS), and both engines use direct injection and Ti-VCT like the turbocharged versions. Start-stop technology is also available.

The engines are produced in Cologne (Germany), Craiova (Romania) and Chongqing (China). Production is expected to be 700,000–1,500,000 units per year.

The 1.0 L EcoBoost engine was introduced to the American market with the 2014 Ford Fiesta sedan and hatchback, although cars with this engine did not sell particularly well. It was announced at the 2012 Los Angeles Auto Show, when the Fiesta was introduced. The 123-hp version debuted in the North American market Focus in the 2015 model year. The engine accounted for less than 5 percent of Fiesta and Focus sales in the U.S., according to a 2017 report. The 1.0 L engine was awarded the International Engine of Year Award 2016, making it the Best Engine Under 1.0 L for the fifth time in a row. After the discontinuation of the Focus and Fiesta in North America, the 1.0 L is only available there in the EcoSport.

In 2017 Ford was again awarded International Engine of Year (for Engines Under 1.0 L) with a largely reconfigured version of the Ecoboost 1.0. Although thermodynamically similar to the old Ecoboost 1.0, the new engine features cylinder deactivation under low-load conditions. A new dual-mass flywheel and a vibration-damping clutch disc (in manual-transmission vehicles) help neutralise engine oscillations when running on two cylinders. Production started in 2018.

In 2019, Ford launched an mHEV version of the 1.0 EcoBoost engine first fitted to the Puma SUV, which uses a belt-driven integrated starter/generator-motor (BiSG); which is in essence a starter motor, alternator, and propulsion motor in one. Fundamentally, the engine is identical to the 2018–present 1.0 EcoBoost, but features the electric starter/generator and its battery system. The motor itself is not used to propel the vehicle on its own, and is mainly used to increase efficiency by reducing engine load, provide extra power during acceleration, and to reduce the perceived ‘turbo-lag’ at certain engine speeds while accelerating. The starter/generator makes use of a 48-volt battery system in the car, although vehicles fitted with these engines are not plug-in hybrids or full hybrids. Further developments introduced include a more comprehensive ‘start-stop’ functionality, which was previously available but did not cut the engine off until the vehicle was completely stopped. The new engines can turn off while the car decelerates, at a maximum speed of about 15 mph. The new, electrified engines are available in either 125 hp (93 kW; 127 PS) or 154 hp (115 kW; 156 PS) outputs.

In 2024, 139,730 US-market Fox engines are subject to a safety recall. The oil pump belt tensioner may fail and/or the belt may fail resulting in a loss of oil pressure causing severe engine damage and/or lockup and loss of power braking assist. Before the recall there were 2,099 allegedly-related warranty claims.

Applications

  • 84 hp (63 kW; 85 PS) at 6000 rpm, 130 lb⋅ft (170 N⋅m) at 1400-3500 rpm
  • 123 hp (92 kW; 125 PS) at 6000 rpm, 150 lb⋅ft (210 N⋅m) at 1750 rpm Motor: 11.5 kW (15.4 hp; 15.6 PS), 37 lb⋅ft (50 N⋅m) motor (MHEV)
  • 138 hp (103 kW; 140 PS) at 6000 rpm, 130 lb⋅ft (180 N⋅m) at 1500-5000 rpm
  • 155 PS (114 kW; 153 hp) at 6000 rpm, 180 lb⋅ft (240 N⋅m) at 2500 rpm, 10:1 compression ratio Motor: 11.5 kW (15.4 hp; 15.6 PS), 37 lb⋅ft (50 N⋅m) motor (MHEV)
  • 170 PS (130 kW; 170 hp) at 6000 rpm, 183 lb⋅ft (248 N⋅m) at 3000 rpm, 10:1 compression ratio Motor: 11.5 kW (15.4 hp; 15.6 PS), 37 lb⋅ft (50 N⋅m) motor (MHEV)

Motorsports

1.1 L Duratec Ti-VCT

Reciprocating internal combustion engine
1.1 L Duratec Ti-VCT I-3
Layout
ConfigurationInline-3
Displacement1,084 cc (66.1 cu in)
Cylinder bore73.0 mm (2.87 in)
Piston stroke86.3 mm (3.40 in)
Cylinder block materialCast iron
Cylinder head materialCast aluminum
Valvetrain12 valve DOHC
Valvetrain drive systemWet belt
Compression ratio12.0:1
Combustion
Fuel systemPort injection
ManagementBosch MED17
Oil systemFixed displacement oil pump

This is a decontented version of the 1.0L Ecoboost Fox engine intended to provide a more affordable powertrain option. It shares most components with the Fox including the block, oil bathed timing belt, valvetrain, and ECU, but is port injected, lacks cylinder deactivation, and is naturally aspirated; as a result, its compression ratio is raised to 12.0:1. It is built at Ford's Bridgend Engine Plant in the UK.

Applications

69 hp (51 kW; 70 PS) at 5000-6500 rpm, 81 lb⋅ft (110 N⋅m) at 3500 rpm

84 hp (63 kW; 85 PS) at 6300 rpm, 81 lb⋅ft (110 N⋅m) at 3500 rpm

1.5 L Dragon

This section needs to be updated. The reason given is: "MPC" refresh found in 2023+ Escape and 2025 Bronco Sport. Please help update this article to reflect recent events or newly available information. (October 2024)
Reciprocating internal combustion engine
Dragon 1.5 L Ecoboost I-3
Layout
ConfigurationInline-3
Displacement1,497 cc (91.4 cu in)
Cylinder bore84.0 mm (3.31 in)
Piston stroke90.0 mm (3.54 in)
Cylinder block materialCast aluminum
Cylinder head materialCast aluminum
Valvetrain12 valve DOHC roller finger follower
Compression ratio9.7-11.0:1
Combustion
TurbochargerSingle Continental radial-axial
Fuel systemPort and direct injection
ManagementBosch MG1CS016
Oil systemTwo-stage variable displacement oil pump
Chronology
PredecessorEcoboost 1.5 L I4

On 24 February 2017, as part of the unveiling of the seventh generation (Mk8 - UK) derived Fiesta ST, Ford announced an all-new aluminum inline 3-cylinder 1.5 L EcoBoost engine with cylinder deactivation technology. The version of this engine announced for the Fiesta ST produces 200 PS (150 kW; 200 hp) at 6,000 rpm and delivers 290 N⋅m (210 lbf⋅ft) of torque from 1,600 to 4,000 rpm.

The engine is based on an expansion of the 1.0 EcoBoost, taking the capacity per cylinder up to 500cc which Ford consider is likely to be the maximum for optimum thermal efficiency. The engine is an all-aluminum design with integrated exhaust manifold, low inertia mixed flow turbocharger and combines both port fuel injection and direct fuel injection.

The engine is equipped with cylinder deactivation technology, implemented by stopping fuel delivery and valve operation for one of the engine's cylinders in conditions where full capacity is not needed.

Applications

  • 148 hp (110 kW; 150 PS) at 6000 rpm, 180 lb⋅ft (240 N⋅m) at 1600-5000 rpm
  • 180 hp (130 kW; 180 PS) at 6000 rpm, 180 lb⋅ft (240 N⋅m) at 1600-5000 rpm
  • 180 hp (130 kW; 180 PS) at 6000 rpm, 200 lb⋅ft (270 N⋅m) at 3000 rpm
  • 181 hp (135 kW; 184 PS) at 6000 rpm, 190 lb⋅ft (260 N⋅m) at 3000 rpm
  • 197 hp (147 kW; 200 PS) at 6000 rpm, 210 lb⋅ft (290 N⋅m) at 1600-4000 rpm, 9.7:1 compression ratio

Motorsports

Inline four-cylinder

Four versions of EcoBoost I4 engines are in production. A 1.5 L downsized version of the 1.6 L, the 1.6 L which replaces larger-displacement, naturally aspirated I4 engines in Ford vehicles, a 2.0 L which replaces small-displacement, naturally aspirated V6 engines, and a 2.3 L used in high-performance applications. All four engines are turbocharged and direct injected. The production engine family was officially announced at the 2009 Frankfurt Motor Show.

1.5 L

A 1.5 L version of the EcoBoost engine family was first unveiled in the 2014 Ford Fusion as a downsized version of the 1.6 L EcoBoost engine. The downsized displacement is a result of Chinese vehicle tax regulations which tax vehicles with engine displacements of 1.5 L or less at lower rates. The 1.5 L EcoBoost adds new technology compared to the 1.6 L on which it is based, including an integrated exhaust manifold and a computer-controlled water pump clutch to decrease warm up time. In the 2015 Fusion, the engine produces 181 hp (135 kW; 184 PS) and 185 lb ft .

Applications

184 PS (135 kW; 181 hp)

181 PS (133 kW; 179 hp)

162 PS (119 kW; 160 hp)

160 PS (118 kW; 158 hp)

150 PS (110 kW; 148 hp)

190 PS (140 kW; 187 hp)

1.6 L

Reciprocating internal combustion engine
1.6 L Ecoboost I-4
Layout
ConfigurationInline-4
Displacement1,596 cc (97.4 cu in)
Cylinder bore79.0 mm (3.11 in)
Piston stroke81.4 mm (3.20 in)
Cylinder block materialCast aluminum
Cylinder head materialCast aluminum
Valvetrain16 valve DOHC direct acting mechanical bucket
Valvetrain drive systemBelt
Compression ratio10.0-10.1:1
Combustion
TurbochargerBorg Warner KP39 low-inertia turbo
Fuel systemDirect injection
ManagementBosch MED17
Oil systemVariable displacement oil pump
Emissions
Emissions target standardEuro Stage 5
Chronology
SuccessorEcoboost 1.5 L I4

The 1.6-litre version was first unveiled in the 2009 Lincoln C concept. The engine is rated at 197 hp (147 kW; 200 PS) and 207 lb⋅ft (280.7 N⋅m). This was also installed in many Volvos during the years of Ford's ownership of that company; Volvo badged the engine B4164T# (with # being different number for different iterations).

The European market version of the 1.6 L provides 150 hp (112 kW; 152 PS), although a 160 hp (119 kW; 162 PS) version is used in the Ford Mondeo.

The 1.6 L EcoBoost engine is raced in the British Formula Ford Championship. The units have replaced the original N/A 1.6 L Duratec units, which in turn replaced the 1.8 L Zetec-engined cars. The engine has also been used for the past few seasons in the WRC in the Ford Fiesta.

The 1.6 L EcoBoost engine is also produced at the Ford Bridgend Engine Plant in Bridgend, Wales.

Safety and recalls

See also: Ford Escape § Recalls

In 2013, Ford has recalled certain Ford Escapes equipped with this engine due to the potential for them to catch fire after overheating.

In 2017, Ford recalled over 360,000 Ford Escape, Ford Fiesta ST, Ford Fusion, Ford Transit Connect, Ford Focus and C-Max hybrid with 1.6 ecoboost engines because of a risk of engine fires caused by a "lack of coolant circulation". There were 29 fires in the U.S. and Canada reported to Ford. The recall partly contributed to a charge of US$300 million by Ford.

Specifications

Type-turbocharged, direct gasoline-injected inline four-cylinder engine with twin independent variable-camshaft timing
Displacement-1,596 cc (1.6 L; 97 cu in)

More details
Type

Turbocharged, direct gasoline-injected inline four-cylinder engine with twin independent variable-camshaft timing
Displacement
1,596 cc (1.6 L; 97.4 cu in)
Bore
79.0 mm (3.11 in)
Stroke
81.4 mm (3.20 in)
Compression ratio
10.0:1
Valve gear
DOHC with four valves per cylinder, twin independent variable-cam timing
Cylinder head
Cast aluminium
Cylinder block
Cast aluminium
Camshaft drive
Timing belt with dynamic tensioner
Crankshaft
Cast iron, four counterweights, five main bearings
Engine management
Bosch MED17 with CAN-Bus and individual cylinder knock control
Fuel injection
High-pressure direct fuel injection with six-hole injectors
Emission control
Close-coupled three-way catalyst system with heated oxygen sensors and catalyst monitor sensors after catalyst
Emission level
Euro Stage 5
Turbocharger
Borg Warner KP39 low-inertia turbo
Lubrication system
Pressure-fed lubrication system with variable-displacement pump and full-flow oil filter
System capacity with filter
4.1 L (4.3 US qt)

Applications

120 PS (88 kW; 118 hp)

150 PS (110 kW; 148 hp)

160 PS (118 kW; 158 hp)

180 PS (132 kW; 178 hp)

185 PS (136 kW; 182 hp)

200 PS (147 kW; 197 hp)

Motorsports

2.0 L (2010–2018)

  • 2.0L EcoBoost demo engine and the 2011 NAIAS 2.0L EcoBoost demo engine and the 2011 NAIAS
  • 2.0L EcoBoost demo engine at the 2011 NAIAS. Note the exhaust manifold, not present on production North American engines 2.0L EcoBoost demo engine at the 2011 NAIAS. Note the exhaust manifold, not present on production North American engines
  • Another angle of the 2011 NAIAS demo engine, again showing the Euro-spec exhaust manifold Another angle of the 2011 NAIAS demo engine, again showing the Euro-spec exhaust manifold

A 2.0 L version was first seen in the 2008 Ford Explorer America concept. The engine was rated at 275 hp (205 kW; 279 PS) and 280 lb⋅ft (380 N⋅m).

It is the first EcoBoost engine to include twin independent variable cam timing (Ti-VCT), with advertised 10–20% better fuel economy while maintaining the performance of 3.0 L V6s.

This engine is derived from the 2.0 L Mazda L engine block used by Ford in the North American Focus MK3, but equipped with unique heads, fuel injection system, and Ford's Ti-VCT. It should not be confused with the Mazda 2.3 DISI Turbo, which also features direct injection along with turbocharging, but shares little else aside from the same engine block.

The 2.0 L EcoBoost engine used in North American vehicles is now produced at the Cleveland Engine Plant in Brook Park, Ohio.

Specifications

Type- turbocharged, direct gasoline-injected inline four-cylinder engine with Ti-VCT
Displacement-1,999 cc (2 L; 122 cu in)

More details
Type

Turbocharged, direct gasoline-injected inline four-cylinder engine with Ti-VCT
Displacement
1,999 cc (2 L; 122 cu in)
Bore
87.5 mm (3.4 in)
Stroke
83.1 mm (3.3 in)
Compression ratio
9.3:1
Valve gear
DOHC with four valves per cylinder, Ti-VCT
Cylinder head
DOHC Gravity die-cast aluminum alloy with sintered valve guides and seats
Cylinder block
High-pressure die-cast aluminum alloy with bed plate
Camshaft drive
Single chain
Crankshaft
Cast iron with 47 mm diameter crankpins, eight counterweights, five 52 mm diameter main bearings and damped front pulley
Engine management
Bosch MED17 with CAN-Bus and individual knock control
Fuel injection
High-pressure fuel direct injection with 7-hole injectors
Emission control
Close-coupled three-way catalyst system with heated oxygen sensors and catalyst monitor sensors after catalyst
Emission level
Euro Stage 5
Turbocharger
Borg Warner K03 low-inertia integrated turbo system
Lubrication system
Wet-Sump
System capacity with filter
5.7Qt

Applications

Although not listed, some 2.0 EcoBoost engines have a different block design including alternate weaker deck design and cooling ports missing. When installed in Volvos, these engines are called B4204T6 and T7.

It should also be noted that North American-spec and European-spec engines have different cylinder heads: North American market vehicles use a cylinder head with an integrated exhaust manifold, while European-spec vehicles use a cylinder head with individual exhaust ports and a conventional exhaust manifold.

2.0 L "Twin-scroll" (2015–)

This section needs expansion. You can help by adding to it. (June 2014)
This section needs to be updated. The reason given is: "MPC" refresh found in 2023+ Escape and 2025 Bronco Sport. Please help update this article to reflect recent events or newly available information. (October 2024)

A redesigned 2.0 L EcoBoost four-cylinder was introduced with the second-generation Ford Edge, followed by the 2017 Ford Escape in spring 2016. It features a higher compression ratio than its predecessor (10.1:1 vs 9.3:1), with the exception of the Maverick, along with a twin-scroll turbocharger and fuel and oil systems upgrades, as well as a redesigned block and cylinder head. This new engine will deliver more low-end torque than its predecessor. It is expected to tow 3,500 lb (1,600 kg) in the redesigned Edge and 2017+ Escape.

Applications

Motorsport

2.3 L

Reciprocating internal combustion engine
2.3 L Ecoboost I-4
Layout
ConfigurationInline-4
Displacement2,261 cc (138.0 cu in)
Cylinder bore87.5 mm (3.44 in)
Piston stroke94.0 mm (3.7 in)
Cylinder block materialhigh pressure cast aluminum
Cylinder head materialHigh pressure cast aluminum
Valvetrain16-valve DOHC direct acting mechanical bucket
Compression ratio9.37-10.0:1
Combustion
TurbochargerSingle-scroll
Fuel systemDirect injection

The 2.3L version of the EcoBoost engine, a derivative of the Mazda L3, debuted in the 2015 Ford Mustang and also the Lincoln MKC crossover and has been implemented in many Ford and Lincoln vehicles with various outputs.

The 2.3 L EcoBoost engine is produced with the 2.0 L EcoBoost at the Valencia Engine Plant in Valencia, Spain. In March 2015 Ford announced the official production start of the all-new twin-scroll 2.0-liter and 2.3-liter EcoBoost engines for North America at its Cleveland Engine Plant in Ohio.

Applications

  • 270 hp (201 kW; 274 PS) at 5500 rpm, 310 lb⋅ft (420 N⋅m) at 3000 rpm
  • 276 hp (206 kW; 280 PS) at 5500 rpm, 310 lb⋅ft (420 N⋅m) at 3000–4000 rpm
  • 280 hp (209 kW; 284 PS) at 5600 rpm, 310 lb⋅ft (420 N⋅m) at 3000 rpm
  • 285–295 hp (213–220 kW; 289–299 PS) at 5500 rpm, 305–310 lb⋅ft (414–420 N⋅m) at 2750 rpm
  • 300 hp (224 kW; 304 PS) at 5500 rpm, 310 lb⋅ft (420 N⋅m) at 3500 rpm
  • 300 hp (224 kW; 304 PS) at 5700 rpm, 325 lb⋅ft (441 N⋅m) at 3400 rpm
  • 310 hp (231 kW; 314 PS) at 5500 rpm, 320–350 lb⋅ft (434–475 N⋅m) at 3000 rpm, 9.5:1 compression ratio
  • 330 hp (246 kW; 335 PS) at 6000 rpm, 350 lb⋅ft (475 N⋅m) at 3000 rpm, 9.37:1 compression ratio
  • 350 hp (261 kW; 355 PS) at 6000 rpm, 350 lb⋅ft (475 N⋅m) at 3200 rpm
  • 325–405 hp (242–302 kW; 330–411 PS) at 6000 rpm, 317–369 lb⋅ft (430–500 N⋅m) at 3200 rpm
  • 395 hp (295 kW; 400 PS) at 6200 rpm, 369 lb⋅ft (500 N⋅m) at 3000-3500 rpm

2.3L "MPC"

Reciprocating internal combustion engine
MPC 2.3 L Ecoboost I-4
Layout
ConfigurationInline-4
Displacement2,261 cc (138.0 cu in)
Cylinder bore84 mm (3.31 in)
Piston stroke102 mm (4.02 in)
Cylinder block materialhigh pressure cast aluminum
Cylinder head materialHigh pressure cast aluminum
Valvetrain16 valve DOHC roller finger follower
Compression ratio10.634:1
Combustion
TurbochargerTwin-scroll
Fuel systemPort and direct injection
Chronology
PredecessorEcoboost 2.3 L I4

An updated version of the 2.3L engine debuted in the 2024 Ford Mustang. It has different cylinder dimensions to the previous version, with bore decreased to 84 mm (3.31 in) and the stroke increased to 102 mm (4.02 in), which comes out to nearly the exact same displacement of 2.3 L (2,261 cc; 138 cu in). The compression ratio is increased to 10.634:1. Valve diameter and lift are increased, with intake and exhaust valve diameters of 34 mm (1.3 in) and 28.9 mm (1.14 in) respectively, and both valve types lifting up to 9 mm (0.35 in). It now features the Modular Power Cylinder (MPC) architecture, which involves upgrades such as port injection alongside the existing direct injection, a smaller twin-scroll turbocharger with an electronic wastegate, internal exhaust gas recirculation piping, and an integrated airbox in longitudinal applications. It is built at Ford's Cleveland Engine Plant in Ohio.

Applications

  • 300 hp (220 kW; 300 PS) at 5500 rpm, 310 lb⋅ft (420 N⋅m) at 3500 rpm
  • 315 hp (235 kW; 319 PS) at 5500 rpm, 350 lb⋅ft (470 N⋅m) at 3000 rpm

V-type six-cylinder

2.7 L Nano (first generation)

Introduced with the 2015 Ford F-150 is a twin-turbo 2.7 L V6 EcoBoost engine. It delivers about 325 hp (242 kW) and 375 lb⋅ft (508 N⋅m). The engine is built at the Lima Ford Engine Plant. Ford has invested US$500 million in the Lima plant for the new engine. Ford also states that the new engine will bring 300 jobs to Allen County, Ohio, but transfers from other plants make the actual number hard to pin down. A 335-hp version is to be an option on the 2017 Lincoln Continental. Being a next-generation design, it uses a two piece block design. Compacted graphite iron, a material Ford uses in its 6.7 L PowerStroke diesel engine, is used for the upper cylinder section with aluminum used for the lower stiffening section of the block.

Applications

  • 325 hp (242 kW) at 5750 rpm, 375 lb⋅ft (508 N⋅m) at 3000 rpm
  • 335 hp (250 kW) at 5500 rpm, 380 lb⋅ft (515 N⋅m) at 3000 rpm
  • 335 hp (250 kW) at 5500 rpm, 380 lb⋅ft (515 N⋅m) at 3250 rpm
  • 315 hp (235 kW) at 4750 rpm, 350 lb⋅ft (475 N⋅m) at 2750 rpm
  • 335 hp (250 kW) at 5000 rpm, 380 lb⋅ft (515 N⋅m) at 3000 rpm
  • 325 hp (242 kW) at 5500 rpm, 380 lb⋅ft (515 N⋅m) at 3500 rpm

2.7 L Nano (second generation)

The second generation 2.7L EcoBoost V6 was introduced with the 2018 Ford F-150 and is mated to a 10-speed transmission that debuted the year prior. It produces an additional 25 lb⋅ft (34 N⋅m) of torque over the first generation. The engine uses a compacted-graphite iron (CGI) block, which is both high strength and lightweight.

It boasts a number of changes from the first generation, with many carrying over from the second generation 3.5L EcoBoost engine that arrived a year earlier in the F-150. The most prominent change being the addition of port fuel injection, while keeping the direct injection system. It also has reduced internal friction to improve power and fuel economy, and new exhaust gas recirculation system. The specific output of the engine is now 121 hp/L, versus the 395-hp Ford Coyote 5.0L naturally aspirated V-8 which has a specific output of only 78 hp/L. The peak torque matches the 5.0L V-8, albeit at a lower 2,750 rpm vs. 4,500 rpm for the V-8.

Additional changes include a new lightweight cam to save weight, dual-chain cam drive system that is stronger and reduces parasitic friction loss, a new electrically actuated wastegate that provides more accurate turbo boost control, a high-pressure exhaust gas recirculation system, and a variable-displacement belt-driven oil pump that is electronically controlled to modulate oil flow to further reduce parasitic losses.

Applications

  • 325 hp (242 kW) at 5000 rpm, 400 lb⋅ft (542 N⋅m) at 2750 rpm
  • 330 hp (246 kW) at 5250 rpm and 415 lb⋅ft (563 N⋅m) at 3100 rpm
  • 315 hp (235 kW), 400 lb⋅ft (542 N⋅m)

3.0 L Nano

A 3.0L V6 twin-turbocharged gasoline direct-injection engine, derived from the 2.7 L EcoBoost, was released in 2016 that produces between 350 and 400 horsepower. The 3.0 L is gradually replacing the 3.7 L Ti-VCT Cyclone V6 engine in various vehicles, including the MKZ, Continental, Aviator, Ford Explorer and the 2022 Ford Bronco Raptor. The 3.0-liter version of the engine was created by increasing the 2.7-liter's cylinder bore in the CGI-block from 83.0 millimeters to 85.3, and by lengthening piston stroke by 3.0 millimeters (to 86.0).

Applications

  • 350 hp (261 kW) at 5500 rpm, 400 lb⋅ft (542 N⋅m) at 2750 rpm (Front-wheel drive only)
    • 2017–2020 Lincoln MKZ
  • 400 hp (298 kW) at 5750 rpm, 400 lb⋅ft (542 N⋅m) at 2750 rpm (All-wheel drive only)
    • 2017–2020 Lincoln Continental
    • 2017–2020 Lincoln MKZ
  • 365 hp (272 kW) at 5500 rpm, 380 lb⋅ft (515 N⋅m) at 3500 rpm
    • 2020–2021 Ford Explorer
  • 392 hp (292 kW) at 5650 rpm, 430 lb⋅ft (583 N⋅m) at 3500 rpm
    • 2022–present Ford Ranger Raptor
  • 400 hp (298 kW) at 5500 rpm, 415 lb⋅ft (563 N⋅m) at 3500 rpm
    • 2020–present Ford Explorer ST (2022– King Ranch & Platinum trims)
    • 2020–present Ford Police Interceptor Utility
    • 2020–present Lincoln Aviator
  • 418 hp (312 kW) at 5650 rpm, 440 lb⋅ft (597 N⋅m) at 3500 rpm
    • 2022–present Ford Bronco Raptor
  • 494 hp (368 kW) total, with added electric engines at 5500 rpm, 630 lb⋅ft (854 N⋅m)total, with added electric motors at 3000 rpm
    • 2020–2023 Lincoln Aviator plug-in hybrid

3.5 L (first generation)

The first Ford vehicle to feature this engine was the 2007 Lincoln MKR concept vehicle under the name TwinForce. The engine was designed to deliver power and torque output equivalent to a typical 6.0 L or larger-displacement V8 while achieving at least 15% better fuel efficiency and reduced greenhouse emissions. In the MKR, the concept TwinForce engine was rated at 415 hp (309 kW) and 400 lb⋅ft (542 N⋅m) of torque, as well as run on E85 fuel. When the same prototype engine reappeared in the Lincoln MKT concept in 2008 North American International Auto Show, the name was changed to EcoBoost. Official EcoBoost production began on May 19, 2009 at Cleveland Engine Plant No. 1.

The production engines use the Duratec 35 V6 engine block. The fuel charging and delivery systems can attain high fuel pressures up to 14.8 megapascals (2,150 psi), necessary for efficient operation of the direct fuel injection system. The F-series EcoBoost 3.5L V6 uses two BorgWarner K03 turbochargers which can spin up to 170,000 rpm and provide up to 100 kPa (15 psi) of boost. The transverse EcoBoost 3.5L V6 uses two Garrett GT1549L turbochargers and provides up to 76 kPa (11 psi) of boost. The turbos are set up in a twin-turbo configuration. The engine can consume up to 25% more air over the naturally aspirated counterpart. Through the use of direct injection, the engine needs only regular-grade gasoline to run. The EcoBoost V6 was first available as an engine option for 2010 Lincoln MKS, followed by 2010 Ford Flex, 2010 Ford Taurus SHO, and 2010 Lincoln MKT. The fuel-charging and -delivery systems were co-developed with Robert Bosch GmbH.

In 2009, Ford modified an experimental 3.5 L V6 EcoBoost engine with both E85 direct injection and gasoline indirect fuel injection, which achieved a brake mean effective pressure of 2.72 MPa (395 psi) (27 bar), which translates to roughly 750 newton-metres (553 lb⋅ft) of torque and 316 horsepower (236 kW) at 3000 rpm (flat torque curve from 1500–3000 rpm).

Applications

3.5 L (D35; second generation)

Reciprocating internal combustion engine
D35 3.5 L Ecoboost V-6
Layout
Configuration60° V6
Displacement3,497 cc (213 cu in)
Cylinder bore92.51 mm (3.64 in)
Piston stroke86.7 mm (3.41 in)
Cylinder block materialCast aluminum
Cylinder head materialAluminum alloy
Valvetrain24 valve DOHC roller finger follower
Valvetrain drive systemChain
Compression ratio9.0-10.5:1
Combustion
TurbochargerTwin turbochargers
Fuel systemPort and direct injection
Chronology
PredecessorEcoboost 3.5 L V6 (first generation)

The second generation 3.5L EcoBoost V6 (codename D35) was first introduced for the 2017 Ford GT at the 2015 Detroit Auto Show, as well as the 2017 F-150, 2018 Expedition and 2018 Navigator later on.

The most prominent change compared to the first generation is the addition of port fuel injection, while retaining the direct injectors. The port fuel injection was partly added due to the fuel output needs on the 3.5L HO Raptor engine, but also has several other benefits. It will prevent carbon buildup on the intake valves and keep them clean due to fuel passing over the valves. Under certain engine conditions such as low rpm and low loads, the high-pressure fuel pump and direct injection system will deactivate and the engine will only use the port fuel injection, reducing efficiency losses from driving the high pressure fuel pump. Both systems will operate at cold start, which will reduce the increased emissions that direct injection suffers caused by cold cylinder walls and lower fuel atomization.

Changes to the turbochargers include electronically actuated wastegates, turbine wheels that are now made with lighter Mar-M-247 super-alloy which increases responsiveness, and the same diameter 51 mm turbine wheels that now have sharper vane angles allowing between 2.5–16 psi (0.17–1.10 bar) higher boost. The turbochargers continue to be supplied by Borg Warner.

The cam drive system was changed from a single primary chain to a stronger two primary chain system, with separate chains driving each cylinder bank. In addition to the dual primary chains, the side plates on the chains were also thickened. The cam chain drive sprocket on the crankshaft is now a double gear arrangement to drive the two primary chains. These two changes were done to improve the harmonics, and are also stronger to help minimize the chain stretch that can occur over time on the 1st generation 3.5L EcoBoost.

The camshafts were made hollow for weight savings, along with the addition of a roller-finger follower valvetrain. The compression ratio was increased from 10.0:1 to 10.5:1 on lower output versions; higher output versions such as the 3.5L EcoBoost HO in the F-150 Raptor, have lower compression ratios like 10.0:1 and as low as 9.0:1 in the Ford GT.

The camshaft VCT (phaser) design was changed to improve reliability and reduce the development of an engine start-up tapping/rattling noise over time. Ford uses a single piston cooling jet per cylinder, but the oil volume was increased. The underside of the pistons were also redesigned to better transfer heat into the oil.

The engine features auto start/stop, which decreases emissions during city driving by shutting the engine off in extended idling periods.

The engines are 4 lb (1.8 kg) lighter than the previous 3.5L EcoBoost.

Variable camshaft timing phaser issues

VCT units in Ford and Lincoln vehicles with this engine from the 2020 model year and before are found to be failing around 40-80k miles, requiring a replacement to resolve. Ford has issued multiple service bulletins, with the most recent being Customer Satisfaction Program 21N03 – Supplement #4. This program extends warranty coverage under certain conditions for a VCT replacement due to tapping phasers. The latest VCT part number (ML3Z prefix) is a significant redesign and so far has been durable and not shown the rattling/tapping issue develop.

Applications

  • 310 hp (231 kW) at 5000 rpm, 400 lb⋅ft (542 N⋅m) at 2500 rpm
  • 375 hp (280 kW) at 5000 rpm, 470 lb⋅ft (637 N⋅m) at 3500 rpm
  • 375 hp (280 kW) at 5000 rpm, 470 lb⋅ft (637 N⋅m) at 2250 rpm
  • 380 hp (283 kW) at 5000 rpm, 470 lb⋅ft (637 N⋅m) at 2250 rpm
  • 400 hp (298 kW) at 5000 rpm, 480 lb⋅ft (651 N⋅m) at 3250 rpm
    • 2018–2021 Ford Expedition Platinum
  • 400 hp (298 kW) at 5000 rpm, 480 lb⋅ft (651 N⋅m) at 2250 rpm
    • 2022–present Ford Expedition Platinum
  • 400 hp (298 kW) at 6000 rpm, 500 lb⋅ft (678 N⋅m) at 3100 rpm
  • 430 hp (321 kW) at 6000 rpm, 570 lb⋅ft (773 N⋅m) at 3000 rpm (FHEV)
  • 440 hp (328 kW) at 5000 rpm, 510 lb⋅ft (691 N⋅m) at 3250 rpm, 10.0:1 compression ratio
    • 2022–present Ford Expedition Timberline & Limited Stealth Performance Packages
  • 450 hp (336 kW) at 5500 rpm, 510 lb⋅ft (691 N⋅m) at 3000 rpm, 10.0:1 compression ratio
  • 450 hp (336 kW) at 5000 rpm, 510 lb⋅ft (691 N⋅m) at 3500 rpm, 10.0:1 compression ratio
  • 450 hp (336 kW) at 5850 rpm, 510 lb⋅ft (691 N⋅m) at 3000 rpm
  • 506 hp (377 kW) at 5200 rpm, 550 lb⋅ft (746 N⋅m) at 4000 rpm
  • 647 hp (482 kW) at 6250 rpm, 550 lb⋅ft (746 N⋅m) at 5900 rpm, 9.0:1 compression ratio
  • 650 hp (485 kW) at 5500 rpm, 421 lb⋅ft (571 N⋅m) at 2500 rpm
  • 660 hp (492 kW) at 6250 rpm, 550 lb⋅ft (746 N⋅m) at 5900 rpm, 9.0:1 compression ratio

Motorsports

See also

References

  1. "2015 Ford Mustang – USA Technical Specifications" (PDF). Ford.com. Ford Motor Company. Retrieved March 19, 2017.
  2. ^ https://media.ford.com/content/dam/fordmedia/North%20America/US/2022/09/14/2024-mustang-technical-specifications.pdf
  3. "Ford of Europe Press Kit – All-new Ford Focus". All-newfordfocus.fordmedia.eu. January 2011. Archived from the original on August 6, 2011. Retrieved January 24, 2012.
  4. English, Andrew (August 10, 2013). "A Look at the Record-setting EcoBoost Sportscar Engine". Enginelabs. Retrieved January 25, 2017.
  5. English, Andrew (February 8, 2012). "Ford Focus 1.0-litre EcoBoost review". Auto Express. Archived from the original on June 28, 2012. Retrieved July 27, 2016.
  6. "FEV Inc. Becomes FEV North America Inc." Aftermarketnews.com. February 5, 2014. Retrieved February 5, 2014.
  7. Taylor, Alex (August 2, 2011). "Ford EcoBoost: The little engine that could". Fortune Magazine. Archived from the original on August 28, 2011. Retrieved August 1, 2023.
  8. "What Is Ford EcoBoost? | Learn What Goes Into Ecoboost Performance". Ford.com. Retrieved November 16, 2017.
  9. "EcoBoost contributes 980 new US patents, continues Ford tradition of patent quality". Ford.com. October 2, 2009. Retrieved November 24, 2009.
  10. Balaskovitz, Andy (May 21, 2014). "Fuel-efficiency loan program looking beyond the Big Three". Midwest Energy News. Archived from the original on December 15, 2017. Retrieved November 27, 2016.
  11. Kroll, Kathie (May 18, 2009). "Ford Cleveland Engine Plant No. 1 in Brook Park reopens after about 2 years". Cleveland.com. Retrieved November 24, 2009.
  12. ^ "New high efficiency four-cylinder Ford EcoBoost engine family debuts at Frankfurt". Media.Ford.com. September 15, 2009. Retrieved November 24, 2009.
  13. admin (September 21, 2016). "Ford Bridgend plant makes 20 millionth engine". Just Auto. Retrieved February 11, 2023.
  14. "Pump it Up: EcoBoost Twin Turbos Pack Power to Give V-6 Engines V-8 Performance Feel". Ford Media. Ford Motor Company. January 11, 2009.
  15. "500,000 Ford EcoBoost Sold". Ford Media. ScoopCar. November 21, 2012. Archived from the original on February 25, 2013. Retrieved November 21, 2012.
  16. "2010 Volvo S60 Concept Offers Look at EcoBoosted 1.6-liter Engine". KBB Green. Kelley Blue Book. Archived from the original on January 11, 2013. Retrieved July 19, 2009.
  17. "Volvo V70 and S80, Now with 2.0 GTDi". autoevolution.com. Retrieved March 18, 2011.
  18. "Ford to refund 'engine fail' EcoBoost customers". BBC News. October 1, 2018.
  19. Chabalala, Jeanette (January 16, 2017). "Ford has only given us excuses - relative of Kuga victim killed in fire". News24.
  20. "Ford recalls all Kugas in South Africa due to fires". Autocar.co.uk. January 16, 2017.
  21. "Ford to replace 2.0-liter EcoBoost engine after just 4 model years". Autonews.com. June 24, 2014. Retrieved March 19, 2019.
  22. Martin, Jack (June 6, 2011). "Ford produces the smallest motor in its history – three-cylinder 1.0-Litre EcoBoost". gizmag.com.
  23. Shunk, Chris (September 12, 2011). "1.0 Ecoboost for Europe". autoblog.com. Retrieved March 19, 2019.
  24. Ripple, Roy Dennis (July 2017). "Dissecting Ford's EcoBoost Engine". motor.com. Retrieved January 25, 2020.
  25. "1.0-Litre EcoBoost Now Powers 1 in 5 New Fords in Europe; Acclaimed 3-Pot is Europe's Top Turbocharged Petrol Engine" (PDF). Ford.com (Press release). Cologne, Germany: Ford Motor Company. August 6, 2014. Archived from the original (PDF) on October 9, 2014. Retrieved March 19, 2019.
  26. "Engine innovations continue despite calls for emissions standards repeal (30 Mar 2017)". Autoweek. March 30, 2017. Retrieved April 1, 2017.
  27. "And the Oscar Goes to - Ford 1.0L EcoBoost". CarBay Philippines. Retrieved June 7, 2016.
  28. "Ford EcoBoost Awarded Best Engine Under 1 0 Liter in 2017 International Engine of the Year". YouTube. July 6, 2017. Archived from the original on December 20, 2021.
  29. Part 573 Safety Recall Report 23V-905 (PDF) (Report). Archived from the original (PDF) on January 10, 2024. Retrieved January 11, 2024.
  30. "All-new 2018 Ford Fiesta ST unveiled with 197bhp". Auto Express. Archived from the original on March 9, 2017. Retrieved February 24, 2017.
  31. "All-New Ford Fiesta ST Offers Limited-Slip Differential and Debuts Patented Technology for Ultimate Driving Dynamics". Ford.comm (Press release). Ford Motor Company. Retrieved March 15, 2018.
  32. "Three-cylinder Ford Ecoboost engine will soon lead brand's sales". Autocar. Retrieved April 28, 2017.
  33. Abuelsamid, Sam (September 15, 2009). "Frankfurt 2009: Ford unveils smallest EcoBoost engine yet at 1.6 litres". Autoblog. Retrieved November 24, 2009.
  34. "Ford Launches New Fuel-Efficient 1.5-Liter EcoBoost Engine". Retrieved April 12, 2013.
  35. "Lincoln C Pairs EcoBoost I-4 with Dual-Clutch Power Shift Transmission for 40-Plus MPG". Ford Media. Ford Motor Company. January 12, 2009.
  36. Estrada, Zac (November 26, 2013). "Ford Recalls Ford Escape For Sixth Time In 18 Months Over Fire Risk". jalopnik.com. Retrieved March 19, 2019.
  37. Lynch, Jim (March 29, 2017). "Ford recalls 230,000 cars over potential engine fires". The Detroit News. Retrieved April 1, 2017.
  38. Krisher, Tom (March 29, 2017). "Ford recalls 570,000 vehicles for engine fire risk, door latch trouble". The Globe and Mail. Associated Press. Retrieved April 1, 2017.
  39. "Ford to Equip Half A Million Vehicles with EcoBoost Engine Technology for Up To 20% Better Fuel Economy". Ford.com (Press release). Ford Motor Company. January 6, 2008. Archived from the original on July 28, 2013.
  40. Abuelsamid, Sam (July 21, 2009). "Ford announces 2.0l ecoboost and dual clutch gearbox for 2010". Autoblog Green. Retrieved November 24, 2009.
  41. "Ford increases fuel economy and performance of I-4 models as 'new frugality' sweeps nation". Ford.com. Ford Motor Company. October 29, 2008. Retrieved July 28, 2009.
  42. "2010 Brussels Motor Show Debut For New Ford S-Max and New Ford Galaxy". Ford.com (Press release). Ford Motor Company. December 15, 2009. Retrieved March 18, 2011.
  43. Abuelsamid, Sam (July 26, 2010). "2011 Ford Explorer puts four-cylinder EcoBoost engine above V6 in pecking order". Autoblog. Retrieved August 8, 2010.
  44. "Moscow Motor Show Debut For New-Look Ford Mondeo: High-Efficiency Powertrains, New Technologies and Fresh Kinetic Design". Ford.com. Ford Motor Company. June 25, 2010. Retrieved March 18, 2011.
  45. "Evoque by Cosworth planned". Autocar.co.uk. December 9, 2010. Retrieved March 18, 2011.
  46. Pettendy, Marton (July 27, 2009). "Ford Falcon EcoBoosted". GoAuto. John Mellor. Archived from the original on October 20, 2012. Retrieved December 6, 2009.
  47. Ewing, Steven J. "2013 Ford Taurus gets 2.0L EcoBoost four, styling tweaks [w/video]". Autoblog.com. Retrieved January 24, 2012.
  48. "First Look: 2013 Ford Taurus". Automobilemag.com. Retrieved October 24, 2011.
  49. "2018 Taurus" (PDF). Ford.com. Ford Motor Company. Retrieved January 4, 2018.
  50. Hardigree, Matt (May 2012). "Ford Focus ST: Now With 252 HP, Overboost, And A Free GoPro Camera". Jalopnik.com. Retrieved July 27, 2016.
  51. "A Radical Departure". sr3sl.com. Radical Sportscars. Archived from the original on February 25, 2012. Retrieved 2012-02-26.
  52. "Ford to replace 2.0-liter EcoBoost after just 4 years". Autonews.com. June 30, 2014. Retrieved July 27, 2016.
  53. "2022 Ford Maverick Tech Specs" (PDF). Ford.com. Retrieved May 2, 2024.
  54. "Ford Details 2015 Edge's New Twin-Scroll 2.0L EcoBoost Engine". carscoops.com. December 31, 2014. Retrieved January 16, 2015.
  55. Cackett, Nic (March 19, 2015). "2015 Zenos E10 S review". Autocar.co.uk. Haymarket Media Group. Archived from the original on June 11, 2016. Retrieved May 27, 2016.
  56. "New Lincoln Nautilus Pairs Powerful Performance with Driver-Assist Technologies That Inspire Confidence". lincoln.com (Press release). November 28, 2017.
  57. "2022 Ford Maverick Tech Specs" (PDF). media.ford.com. Retrieved September 3, 2022.
  58. ^ "Capacities and Specifications - Engine Specifications - 2.3L EcoBoost". Mustang Owner's Manual. Ford Motor Company. Archived from the original on January 7, 2025.
  59. "Ford Cleveland Engine Plant Begins Production of the New Twin-Scroll 2.0-Liter EcoBoost and 2.3-Liter EcoBoost Engines" (Press release). Cleveland: Ford Motor Company. March 6, 2015. Retrieved March 19, 2019.
  60. Chan, Mick (June 9, 2020). "Ford Everest gets 275 PS 2.3 litre EcoBoost for China". Paultan.org. Driven Communications Sdn. Bhd. Archived from the original on September 23, 2022.
  61. "2023 Ford Mustang: Technical Specifications" (PDF). Ford Motor Company. 2022. Archived from the original (PDF) on December 7, 2023.
  62. "2016 Ford Focus RS". Ford.com. Retrieved July 27, 2016.
  63. Stafford, Eric (December 13, 2018). "Ford Focus RS Review, Pricing, and Specs". Caranddriver.com. Hearst Magazine Media, Inc.
  64. Rix, Jack (January 23, 2016). "Video: sideways in the new Ford Focus RS". topgear.com. BBC Studios Distribution. Retrieved January 23, 2016.
  65. Saunders, Matt (March 2, 2016). "2016 Zenos E10 R review". Autocar.co.uk. Haymarket Media Group. Retrieved May 27, 2016.
  66. Pullman, Ben. "Elemental RP1: The road legal track day car for the 21st Century". carmagazine.co.uk. Bauer Consumer Media Ltd. Retrieved May 23, 2018.
  67. "05RR". vuhl05.com.
  68. Padeanu, Adrian. "2019 VUHL 05RR Is Mexico's Newest Road-Legal Track Toy". motor1.com. Motorsport Network. Retrieved January 22, 2019.
  69. Dhimann, Sidd (January 24, 2019). "2019 Vuhl 05RR". TopSpeed.com. Retrieved January 24, 2019.
  70. Duff, Mike (March 23, 2018). "Dallara Stradale: A Racing Legend Hits the Road". Caranddriver.com. Hearst Magazine Media, Inc. Retrieved May 23, 2018.
  71. Edmunds, Dan (November 24, 2023). "Tested: 2024 Ford Mustang EcoBoost Revises the Four-mula". Car and Driver. Retrieved October 28, 2024.
  72. Markus, Frank (December 15, 2022). "2024 Ford Mustang Engines: More Power for EcoBoost and GT, New Dark Horse Gets 500 HP". MotorTrend. Retrieved October 28, 2024.
  73. "2.7 final stats". jalopnik.com. Archived from the original on July 24, 2014. Retrieved July 22, 2014.
  74. "Ford 2.7 Ecoboost Lima info". Retrieved January 15, 2014.
  75. "2.7 EcoBoost $500,000,000 investment". jalopnik.com. Archived from the original on March 30, 2014. Retrieved April 2, 2014.
  76. "Ford 2.7L EcoBoost V-6 Inside Look". Truck Trend. July 1, 2014. Retrieved April 12, 2021.
  77. "2016 Lincoln MKX Luxury Crossover SUV | Powerful & Sophisticated". Lincoln.com. Archived from the original on July 2, 2015. Retrieved July 27, 2016.
  78. "2019 Ford Edge ST Revealed". roadandtrack.com. January 11, 2018. Retrieved January 11, 2018.
  79. Stoklosa, Alexander (March 8, 2018). "2018 Ford F-150 2.7L EcoBoost V-6 4x2 SuperCrew". Car & Driver. Retrieved March 19, 2019.
  80. Murphy, Tom (January 8, 2018). "Engines: 2018 Winner: Ford F-150 2.7L EcoBoost Twin Turbo V-6". wardsauto.com. Retrieved March 19, 2019.
  81. "2024 Ford Ranger". ford.ca. Retrieved May 30, 2023.
  82. https://www.chastangford.com/static/dealer-18817/pdf/Specs-Houston-TX.pdf Archived July 3, 2020, at the Wayback Machine
  83. "2007 MKR Concept Overview". Ford Media. Ford Motor Company. 2007.
  84. "TwinForce Delivers V-8 Power, V-6 Fuel Efficiency". Ford.com. Ford Motor Company. January 10, 2007.
  85. "Collaboration with Partners Key to EcoBoost's Industry-Leading Fuel-Charging System, Output". Ford Media. Ford Motor Company. February 27, 2009.
  86. Shunk, Chris (August 18, 2008). "Ford reportedly to charge $700 premium for Ecoboost". Autoblog. Retrieved November 24, 2009.
  87. Levine, Mike (June 8, 2009). "Sneak Peek! Ford's "Bobcat" Dual Fuel Engine". PickupTrucks.com. Cars.com. Retrieved November 24, 2009.
  88. "2016 Ford Taurus | Engine Specs". Ford.com. Retrieved July 27, 2016.
  89. "2016 Lincoln MKS | Engine Specs". Lincoln.com. Archived from the original on November 22, 2011. Retrieved July 27, 2016.
  90. "2016 Lincoln MKT Luxury Crossover | Engine Specs". Lincoln.com. Retrieved July 27, 2016.
  91. "2017 Ford Explorer SUV | Engine Specs". Ford.com. Retrieved July 27, 2016.
  92. "2016 Ford Flex Crossover | Engine Specifications". Ford.com. Retrieved July 27, 2016.
  93. "A New Era Dawns For Ford With Start of EcoBoost Engine Production at Storied Cleveland Plant". Ford.com (Press release). Ford Motor Company. May 19, 2009. Retrieved March 18, 2011.
  94. "FORD LAUNCHES UNPRECEDENTED NINE NEW ENGINES, SIX NEW TRANSMISSIONS IN NORTH AMERICA IN 2010". Ford.com (Press release). Ford Motor Company. January 8, 2010. Retrieved March 18, 2011.
  95. "New 2011 F-150 3.5eXplorer EcoBoost" (PDF). Archived from the original (PDF) on August 20, 2010. Retrieved 2010-09-23.
  96. Stoklosa, Alexander. "2017 Ford GT: The Star-Spangled, 647hp and 550 pounds feet Hypercar!". Car & Driver.
  97. Gritzinger, Bob (May 4, 2016). "Ford Touts Second-Gen EcoBoost V-6, 10-Speed Trans for '17 F-150". WardsAuto.com. Retrieved March 19, 2019.
  98. "Customer Satisfaction Program 21N03" (PDF). Ford Motor Company. March 25, 2022.
  99. "Furia Supercar | Adamastor - Adamastor Supercar". Furia Supercar | Adamastor - Adamastor Supercar. Retrieved May 27, 2024.
  100. "Ford GT Full Specs, Features and Price". CarBuzz. Retrieved April 25, 2021.
Ford Taurus
Generations
Engines
Related models
Related articles
« PreviousFord Motor Company engine timeline, North American market, 1980s–present
Type 1980s 1990s 2000s 2010s 2020s
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
Gasoline engines I3 EcoBoost I3
I4 Crossflow I4 CVH I4
Lima/OHC I4
HSC I4 Zetec I4
Duratec 2.0/2.3/2.5 I4 (Mazda L)
EcoBoost 2.0L I4 (Mazda L)
EcoBoost 2.0L I4 (twin-scroll)
I6 Thriftpower Six I6
300/4.9L Truck Six
V6 Cologne V6 (2.8/2.9) Cologne V6 (4.0 SOHC)
Cologne V6 (4.0)
Essex V6 (3.8L/3.9L/4.2L)
3.0L Vulcan V6
SHO V6 (3.0L/3.2L DOHC)
Duratec (Mondeo) V6 (2.5/3.0L DOHC)
Cyclone/Duratec/Ti-VCT/EcoBoost V6 (3.3/3.5/3.7L DOHC)
Nano V6 (2.7/3.0L DOHC twin-turbo)
Small-block V8 Windsor V8 (4.2/4.9/5.8L OHV)
Modular V8 (4.6/5.0/5.2/5.4/5.8L SOHC/DOHC)
SHO V8 (3.4L DOHC)
Medium-block V8 Cleveland V8 (5.8/6.6L OHV) Boss V8 (6.2L SOHC)
Big-block V8 Super Duty V8 (6.6/7.8/8.8L OHV) Godzilla V8 (6.8/7.3L OHV)
Ford 385 engine (6.1/7.0/7.5L OHV)
V10 Modular V10 (6.8L SOHC)
Diesel engines I4 Ford Duratorq
EcoBlue
I5 Ford 3.2L Duratorq
V6 3.0L V6 (Ford Powerstroke)
V8 6.9L/7.3L V8 (International Harvester IDI) 7.3L V8 (Navistar T444E) 6.0L V8 (Navistar VT365) 6.7L V8 (Ford "Scorpion")
6.4L V8 (Navistar MaxxForce 7)
Categories: