Misplaced Pages

Effective number of parties

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Concept in political party systems

In political science, the effective number of parties is a diversity index introduced by Laakso and Rein Taagepera (1979), which provides for an adjusted number of political parties in a country's party system, weighted by their relative size. The measure is especially useful when comparing party systems across countries.

The size of a party can be measured by either:

  1. The effective number of electoral parties (ENEP) weights parties by their share of the vote.
  2. The effective number of parliamentary parties (ENPP) weights parties by their share of seats in the legislature.

The number of parties equals the effective number of parties only when all parties have equal strength. In any other case, the effective number of parties is lower than the actual number of parties. The effective number of parties is a frequent operationalization for political fragmentation. Political concentration can seen as the share of power of large political parties.

Example of how the effective number of parties shows the fragmentation of the Dutch political landscape (1981–2017)

There are several common alternatives for how to define the effective number of parties. John K. Wildgen's index of "hyperfractionalization" accords special weight to small parties. Juan Molinar's index gives special weight to the largest party. Dunleavy and Boucek provide a useful critique of the Molinar index.

Measures

Quadratic

Laakso and Taagepera (1979) were the first to define the effective number of parties using the following formula:

N = 1 i = 1 n p i 2 {\displaystyle N={\frac {1}{\sum _{i=1}^{n}p_{i}^{2}}}}

where n is the number of parties with at least one vote/seat and p i 2 {\displaystyle p_{i}^{2}} the square of each party's proportion of all votes or seats. This is also the formula for the inverse Simpson index, or the true diversity of order 2. This definition is still the most commonly-used in political science.

This measure is equivalent to the Herfindahl–Hirschman index, used in economics; the Simpson diversity index in ecology; the inverse participation ratio (IPR) in physics; and the Rényi entropy of order α = 2 {\displaystyle \alpha =2} in information theory.

Alternatives

An alternative formula was proposed by Grigorii Golosov in 2010.

N = i = 1 n p i p i + p 1 2 p i 2 {\displaystyle N=\sum _{i=1}^{n}{\frac {p_{i}}{p_{i}+p_{1}^{2}-p_{i}^{2}}}}

which is equivalent – if we only consider parties with at least one vote/seat – to

N = i = 1 n 1 1 + ( p 1 2 / p i ) p i {\displaystyle N=\sum _{i=1}^{n}{\frac {1}{1+(p_{1}^{2}/p_{i})-p_{i}}}}

Here, n is the number of parties, p i 2 {\displaystyle p_{i}^{2}} the square of each party's proportion of all votes or seats, and p 1 2 {\displaystyle p_{1}^{2}} is the square of the largest party's proportion of all votes or seats.

Values

The following table illustrates the difference between the values produced by the two formulas for eight hypothetical vote or seat constellations:

Constellation Largest component, fractional share Other components, fractional shares N, Laakso-Taagepera N, Golosov
A 0.75 0.25 1.60 1.33
B 0.75 0.1, 15 at 0.01 1.74 1.42
C 0.55 0.45 1.98 1.82
D 0.55 3 at 0.1, 15 at 0.01 2.99 2.24
E 0.35 0.35, 0.3 2.99 2.90
F 0.35 5 at 0.1, 15 at 0.01 5.75 4.49
G 0.15 5 at 0.15, 0.1 6.90 6.89
H 0.15 7 at 0.1, 15 at 0.01 10.64 11.85

Seat product model

The effective number of parties can be predicted with the seat product model as N = ( M S ) 1 / 6 {\displaystyle N=(MS)^{1/6}} , where M is the district magnitude and S is the assembly size.

Effective number of parties by country

This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources.

For individual countries the values of effective number of number of parliamentary parties (ENPP) for the last available election is shown. Some of the highest effective number of parties are in Brazil, Belgium, and Bosnia and Herzegovina. European Parliament has an even higher effective number of parties if national parties are considered, yet a much lower effective number of parties if political groups of the European Parliament are considered.

Country Year Effective number of parties
 Albania 2021 2.18
 Andorra 2023 2.36
 Angola 2022 2.06
 Antigua and Barbuda 2023 2.43
 Argentina 2023 3.04
 Armenia 2021 1.93
 Australia 2022 3.15
 Austria 2019 3.94
 Bahamas 2021 1.42
 Barbados 2022 1.00
 Belgium 2019 9.70
 Belize 2020 1.37
 Bermuda 2020 1.38
 Bhutan 2023-24 1.86
 Bolivia 2020 2.28
 Bosnia and Herzegovina 2022 9.00
 Botswana 2019 1.94
 Brazil 2022 9.91
 Bulgaria 2023 4.73
 Burkina Faso 2020 4.11
 Cabo Verde 2021 2.20
 Canada 2021 2.76
 Chile 2021 4.13
 Colombia 2022 8.74
 Costa Rica 2022 4.90
 Croatia 2020 3.19
 Cyprus 2021 4.81
 Czech Republic 2021 3.34
 Denmark 2022 7.24
 Dominica 2022 1.21
 Dominican Republic 2020 2.75
 El Salvador 2021 2.99
 Estonia 2023 4.52
 Ethiopia 2021 1.07
 Faeroe Islands 2019 5.26
 Fiji 2022 2.63
 Finland 2023 5.56
 France 2022 3.72
 Gambia 2022 4.80
 Georgia 2020 2.37
 Germany 2021 5.51
 Ghana 2020 2.01
 Gibraltar 2019 3.04
 Greece 2023 3.09
 Greenland 2021 3.52
 Grenada 2022 1.92
 Guatemala 2023 7.26
 Guinea 2020 2.06
 Guinea-Bissau 2023 2.64
 Guyana 2020 2.06
 Honduras 2021 3.26
 Hungary 2022 1.84
 Iceland 2021 6.29
 India 2019 2.17
 Indonesia 2024 7.26
 Ireland 2020 5.98
 Israel 2022 6.51
 Italy 2022 2.40
 Jamaica 2020 1.53
 Japan 2021 2.69
 Kosovo 2021 3.49
 Latvia 2022 6.14
 Lesotho 2022 3.42
 Liberia 2023 6.44
 Liechtenstein 2021 2.93
 Lithuania 2020 4.84
 Luxembourg 2023 4.43
 Malawi 2019 5.19
 Malaysia 2022 7.72
 Malta 2022 1.97
 Mauritius 2019 2.29
 Mexico 2021 2.13
 Moldova 2021 2.03
 Monaco 2023 1.00
 Mongolia 2024 2.45
 Montenegro 2023 4.85
 Morocco 2021 5.68
 Mozambique 2019 1.67
 Namibia 2019 2.16
 Nepal 2022 4.75
 Netherlands 2023 7.03
 New Zealand 2023 3.81
 Niger 2020-21 3.85
 North Cyprus 2022 2.71
 North Macedonia 2020 3.25
 Northern Ireland 2022 4.52
 Norway 2021 5.56
 Pakistan 2024 4.13
 Panama 2019 3.07
 Paraguay 2023 2.68
 Peru 2021 6.20
 Poland 2023 3.13
 Portugal 2022 2.66
 Romania 2020 4.30
 Russia 2021 1.85
 Saint Kitts and Nevis 2022 2.57
 Saint Lucia 2021 1.65
 Saint Vincent and the Grenadines 2020 1.92
 San Marino 2019 4.63
 Sao Tome and Principe 2022 2.41
 Scotland 2021 2.96
 Senegal 2022 2.61
 Serbia 2023 2.90
 Seychelles 2020 1.69
 Sierra Leone 2023 1.92
 Singapore 2020 1.24
 Slovakia 2023 5.44
 Slovenia 2022 3.04
 South Africa 2019 2.57
 South Korea 2020 2.09
 Spain 2023 3.44
 Sri Lanka 2020 2.10
 Suriname 2020 3.53
 Sweden 2022 5.18
 Switzerland 2023 5.13
 Taiwan 2024 2.38
 Thailand 2023 4.86
 Timor-Leste 2023 3.02
 Trinidad and Tobago 2020 1.99
 Turkey 2023 2.35
 Uganda 2021 2.34
 Ukraine 2019 2.64
 United Kingdom 2024 2.23
 United States 2022 2.00
 Uruguay 2019 3.31
 Uzbekistan 2024 3.73
 Wales 2021 2.71
 Zambia 2021 2.35

See also

References

  1. Laakso, Markku; Taagepera, Rein (1979). ""Effective" Number of Parties: A Measure with Application to West Europe". Comparative Political Studies. 12 (1): 3–27. doi:10.1177/001041407901200101. ISSN 0010-4140. S2CID 143250203.
  2. Lijphart, Arend (1999): Patterns of Democracy. New Haven/London: Yale UP
  3. Avila-Cano, Antonio; Triguero-Ruiz, Francisco (2024). "Concentration of political power: Can we improve its measurement?". Comparative European Politics. 22 (3): 389–407. doi:10.1057/s41295-023-00365-1. ISSN 1472-4790.
  4. Arend Lijphart (1 January 1994). Electoral Systems and Party Systems: A Study of Twenty-seven Democracies, 1945–1990. Oxford University Press. p. 69. ISBN 978-0-19-827347-9.
  5. Wildgen, John K. (1971-07-01). "The Measurement of Hyperfractionalization". Comparative Political Studies. 4 (2). Cps.sagepub.com: 233–243. doi:10.1177/001041407100400205. Retrieved 2014-01-05.
  6. Molinar, Juan (1 January 1991). "Counting the Number of Parties: An Alternative Index". The American Political Science Review. 85 (4): 1383–1391. doi:10.2307/1963951. JSTOR 1963951. S2CID 154924401.
  7. Dunleavy, Patrick; Boucek, Françoise (2003). "Constructing the Number of Parties" (PDF). Party Politics. 9 (3): 291–315. doi:10.1177/1354068803009003002. S2CID 33028828.
  8. Bailey, Jack (2024). "A Solution to the Seat-Product Problem. doi:10.33774/apsa-2024-1x8ft-v2.
  9. Golosov, Grigorii V. (2010). "The Effective Number of Parties: A New Approach". Party Politics. 16 (2): 171–192. doi:10.1177/1354068809339538. ISSN 1354-0688. S2CID 144503915.
  10. Taagepera, Rein (2007). "Predicting Party Sizes". Oxford University Press
  11. Li, Yuhui; Shugart, Matthew S. (2016). "The Seat Product Model of the effective number of parties: A case for applied political science". Electoral Studies. 41: 23–34. doi:10.1016/j.electstud.2015.10.011.
  12. "Election Indices" (PDF).

External links

Lists of countries by political rankings
Freedom
Corruption
Competitiveness
History
Rights
Democracy
Other
Category: