Misplaced Pages

Epigram (programming language)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Functional programming language
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
The topic of this article may not meet Misplaced Pages's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Epigram" programming language – news · newspapers · books · scholar · JSTOR (August 2019) (Learn how and when to remove this message)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (August 2019) (Learn how and when to remove this message)
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Epigram" programming language – news · newspapers · books · scholar · JSTOR (February 2023)
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources.
Find sources: "Epigram" programming language – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message)
(Learn how and when to remove this message)
Epigram
ParadigmFunctional
Designed byConor McBride
James McKinna
DeveloperUnmaintained
First appeared2004; 21 years ago (2004)
Stable release1 / October 11, 2006; 18 years ago (2006-10-11)
Typing disciplinestrong, static, dependent
OSCross-platform: Linux, Windows, macOS
LicenseMIT
Websiteweb.archive.org/web/20120717070845/http://www.e-pig.org/darcs/Pig09/web/
Influenced by
ALF
Influenced
Agda, Idris

Epigram is a functional programming language with dependent types, and the integrated development environment (IDE) usually packaged with the language. Epigram's type system is strong enough to express program specifications. The goal is to support a smooth transition from ordinary programming to integrated programs and proofs whose correctness can be checked and certified by the compiler. Epigram exploits the Curry–Howard correspondence, also termed the propositions as types principle, and is based on intuitionistic type theory.

The Epigram prototype was implemented by Conor McBride based on joint work with James McKinna. Its development is continued by the Epigram group in Nottingham, Durham, St Andrews, and Royal Holloway, University of London in the United Kingdom (UK). The current experimental implementation of the Epigram system is freely available together with a user manual, a tutorial and some background material. The system has been used under Linux, Windows, and macOS.

It is currently unmaintained, and version 2, which was intended to implement Observational Type Theory, was never officially released but exists in GitHub.

Syntax

Epigram uses a two-dimensional, natural deduction style syntax, with versions in LaTeX and ASCII. Here are some examples from The Epigram Tutorial:

Examples

The natural numbers

The following declaration defines the natural numbers:

(         !       (          !   (  n : Nat  !
data !---------! where !----------! ; !-----------!
     ! Nat : * )       !zero : Nat)   !suc n : Nat)

The declaration says that Nat is a type with kind * (i.e., it is a simple type) and two constructors: zero and suc. The constructor suc takes a single Nat argument and returns a Nat. This is equivalent to the Haskell declaration "data Nat = Zero | Suc Nat".

In LaTeX, the code is displayed as:

d a t a _ ( N a t : ) w h e r e _ ( z e r o : N a t ) ; ( n : N a t s u c   n : N a t ) {\displaystyle {\underline {\mathrm {data} }}\;\left({\frac {}{{\mathsf {Nat}}:\star }}\right)\;{\underline {\mathrm {where} }}\;\left({\frac {}{{\mathsf {zero}}:{\mathsf {Nat}}}}\right)\;;\;\left({\frac {n:{\mathsf {Nat}}}{{\mathsf {suc}}\ n:{\mathsf {Nat}}}}\right)}

The horizontal-line notation can be read as "assuming (what is on the top) is true, we can infer that (what is on the bottom) is true." For example, "assuming n is of type Nat, then suc n is of type Nat." If nothing is on the top, then the bottom statement is always true: "zero is of type Nat (in all cases)."

Recursion on naturals

N a t I n d : P : N a t P   z e r o ( n : N a t P   n P   ( s u c   n ) ) n : N a t P   n {\displaystyle {\mathsf {NatInd}}:{\begin{matrix}\forall P:{\mathsf {Nat}}\rightarrow \star \Rightarrow P\ {\mathsf {zero}}\rightarrow \\(\forall n:{\mathsf {Nat}}\Rightarrow P\ n\rightarrow P\ ({\mathsf {suc}}\ n))\rightarrow \\\forall n:{\mathsf {Nat}}\Rightarrow P\ n\end{matrix}}}
N a t I n d   P   m z   m s   z e r o m z {\displaystyle {\mathsf {NatInd}}\ P\ mz\ ms\ {\mathsf {zero}}\equiv mz}
N a t I n d   P   m z   m s   ( s u c   n ) m s   n   ( N a t I n d   P   m z   m s   n ) {\displaystyle {\mathsf {NatInd}}\ P\ mz\ ms\ ({\mathsf {suc}}\ n)\equiv ms\ n\ (NatInd\ P\ mz\ ms\ n)}

...And in ASCII:

NatInd : all P : Nat -> * => P zero ->
         (all n : Nat => P n -> P (suc n)) ->
         all n : Nat => P n
NatInd P mz ms zero => mz
NatInd P mz ms (suc n) => ms n (NatInd P mz ms n)

Addition

p l u s   x   y r e c _   x   { {\displaystyle {\mathsf {plus}}\ x\ y\Leftarrow {\underline {\mathrm {rec} }}\ x\ \{}
p l u s   x   y c a s e _   x   { {\displaystyle {\mathsf {plus}}\ x\ y\Leftarrow {\underline {\mathrm {case} }}\ x\ \{}
p l u s   z e r o   y y {\displaystyle {\mathsf {plus\ zero}}\ y\Rightarrow y}
p l u s   ( s u c   x )   y s u c ( p l u s   x   y )   }   } {\displaystyle \quad \quad {\mathsf {plus}}\ ({\mathsf {suc}}\ x)\ y\Rightarrow {\mathsf {suc}}({\mathsf {plus}}\ x\ y)\ \}\ \}}

...And in ASCII:

plus x y <= rec x {
  plus x y <= case x {
    plus zero y => y
    plus (suc x) y => suc (plus x y)
  }
}

Dependent types

Epigram is essentially a typed lambda calculus with generalized algebraic data type extensions, except for two extensions. First, types are first-class entities, of type {\displaystyle \star } ; types are arbitrary expressions of type {\displaystyle \star } , and type equivalence is defined in terms of the types' normal forms. Second, it has a dependent function type; instead of P Q {\displaystyle P\rightarrow Q} , x : P Q {\displaystyle \forall x:P\Rightarrow Q} , where x {\displaystyle x} is bound in Q {\displaystyle Q} to the value that the function's argument (of type P {\displaystyle P} ) eventually takes.

Full dependent types, as implemented in Epigram, are a powerful abstraction. (Unlike in Dependent ML, the value(s) depended upon may be of any valid type.) A sample of the new formal specification capabilities dependent types bring may be found in The Epigram Tutorial.

See also

  • ALF, a proof assistant among the predecessors of Epigram.

Further reading

  • McBride, Conor; McKinna, James (2004). "The view from the left". Journal of Functional Programming. 14: 69–111. doi:10.1017/S0956796803004829. S2CID 6232997.
  • McBride, Conor (2004). The Epigram Prototype, a nod and two winks (Report).
  • McBride, Conor (2004). The Epigram Tutorial (Report).
  • Altenkirch, Thorsten; McBride, Conor; McKinna, James (2005). Why Dependent Types Matter (Report).
  • Chapman, James; Altenkirch, Thorsten; McBride, Conor (2006). Epigram Reloaded: A Standalone Typechecker for ETT (Report).
  • Chapman, James; Dagand, Pierre-Évariste; McBride, Conor; Morris, Peter (2010). The gentle art of levitation (Report).

References

  1. "Epigram – Official website". Retrieved 28 November 2015.

External links

Categories: