Misplaced Pages

Statistical field theory

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Euclidean field theory) Framework to describe phase transitions

In theoretical physics, statistical field theory (SFT) is a theoretical framework that describes phase transitions. It does not denote a single theory but encompasses many models, including for magnetism, superconductivity, superfluidity, topological phase transition, wetting as well as non-equilibrium phase transitions. A SFT is any model in statistical mechanics where the degrees of freedom comprise a field or fields. In other words, the microstates of the system are expressed through field configurations. It is closely related to quantum field theory, which describes the quantum mechanics of fields, and shares with it many techniques, such as the path integral formulation and renormalization. If the system involves polymers, it is also known as polymer field theory.

In fact, by performing a Wick rotation from Minkowski space to Euclidean space, many results of statistical field theory can be applied directly to its quantum equivalent. The correlation functions of a statistical field theory are called Schwinger functions, and their properties are described by the Osterwalder–Schrader axioms.

Statistical field theories are widely used to describe systems in polymer physics or biophysics, such as polymer films, nanostructured block copolymers or polyelectrolytes.

Notes

  1. Le Bellac, Michel (1991). Quantum and Statistical Field Theory. Oxford: Clarendon Press. ISBN 978-0198539643.
  2. Altland, Alexander; Simons, Ben (2010). Condensed Matter Field Theory (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-76975-4.
  3. Rejmer, K.; Dietrich, S.; Napiórkowski, M. (1999). "Filling transition for a wedge". Phys. Rev. E. 60 (4): 4027–4042. arXiv:cond-mat/9812115. Bibcode:1999PhRvE..60.4027R. doi:10.1103/PhysRevE.60.4027. PMID 11970240. S2CID 23431707.
  4. Parry, A.O.; Rascon, C.; Wood, A.J. (1999). "Universality for 2D Wedge Wetting". Phys. Rev. Lett. 83 (26): 5535–5538. arXiv:cond-mat/9912388. Bibcode:1999PhRvL..83.5535P. doi:10.1103/PhysRevLett.83.5535. S2CID 119364261.
  5. Täuber, Uwe (2014). Critical Dynamics. Cambridge: Cambridge University Press. ISBN 978-0-521-84223-5.
  6. Baeurle SA, Usami T, Gusev AA (2006). "A new multiscale modeling approach for the prediction of mechanical properties of polymer-based nanomaterials". Polymer. 47 (26): 8604–8617. doi:10.1016/j.polymer.2006.10.017.
  7. Baeurle SA, Nogovitsin EA (2007). "Challenging scaling laws of flexible polyelectrolyte solutions with effective renormalization concepts". Polymer. 48 (16): 4883–4899. doi:10.1016/j.polymer.2007.05.080.

References

External links

Statistical mechanics
Theory
Statistical thermodynamics
Models
Mathematical approaches
Critical phenomena
Entropy
Applications
Industrial and applied mathematics
Computational
Mathematical software
Discrete
Analysis
Probability theory
Mathematical
physics
Algebraic structures
Decision sciences
Other applications
Related
Organizations


Stub icon

This quantum mechanics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: