In mathematics , the Faxén integral (also named Faxén function ) is the following integral
Fi
(
α
,
β
;
x
)
=
∫
0
∞
exp
(
−
t
+
x
t
α
)
t
β
−
1
d
t
,
(
0
≤
Re
(
α
)
<
1
,
Re
(
β
)
>
0
)
.
{\displaystyle \operatorname {Fi} (\alpha ,\beta ;x)=\int _{0}^{\infty }\exp(-t+xt^{\alpha })t^{\beta -1}\mathrm {d} t,\qquad (0\leq \operatorname {Re} (\alpha )<1,\;\operatorname {Re} (\beta )>0).}
The integral is named after the Swedish physicist Olov Hilding Faxén , who published it in 1921 in his PhD thesis.
n -dimensional Faxén integral
More generally one defines the
n
{\displaystyle n}
-dimensional Faxén integral as
I
n
(
x
)
=
λ
n
∫
0
∞
⋯
∫
0
∞
t
1
β
1
−
1
⋯
t
n
β
n
−
1
e
−
f
(
t
1
,
…
,
t
n
;
x
)
d
t
1
⋯
d
t
n
,
{\displaystyle I_{n}(x)=\lambda _{n}\int _{0}^{\infty }\cdots \int _{0}^{\infty }t_{1}^{\beta _{1}-1}\cdots t_{n}^{\beta _{n}-1}e^{-f(t_{1},\dots ,t_{n};x)}\mathrm {d} t_{1}\cdots \mathrm {d} t_{n},}
with
f
(
t
1
,
…
,
t
n
;
x
)
:=
∑
j
=
1
n
t
j
μ
j
−
x
t
1
α
1
⋯
t
n
α
n
{\displaystyle f(t_{1},\dots ,t_{n};x):=\sum \limits _{j=1}^{n}t_{j}^{\mu _{j}}-xt_{1}^{\alpha _{1}}\cdots t_{n}^{\alpha _{n}}\quad }
and
λ
n
:=
∏
j
=
1
n
μ
j
{\displaystyle \quad \lambda _{n}:=\prod \limits _{j=1}^{n}\mu _{j}}
for
x
∈
C
{\displaystyle x\in \mathbb {C} }
and
(
0
<
α
i
<
μ
i
,
Re
(
β
i
)
>
0
,
i
=
1
,
…
,
n
)
.
{\displaystyle (0<\alpha _{i}<\mu _{i},\;\operatorname {Re} (\beta _{i})>0,\;i=1,\dots ,n).}
The parameter
λ
n
{\displaystyle \lambda _{n}}
is only for convenience in calculations.
Properties
Let
Γ
{\displaystyle \Gamma }
denote the Gamma function , then
Fi
(
α
,
β
;
0
)
=
Γ
(
β
)
,
{\displaystyle \operatorname {Fi} (\alpha ,\beta ;0)=\Gamma (\beta ),}
Fi
(
0
,
β
;
x
)
=
e
x
Γ
(
β
)
.
{\displaystyle \operatorname {Fi} (0,\beta ;x)=e^{x}\Gamma (\beta ).}
For
α
=
β
=
1
3
{\displaystyle \alpha =\beta ={\tfrac {1}{3}}}
one has the following relationship to the Scorer function
Fi
(
1
3
,
1
3
;
x
)
=
3
2
/
3
π
Hi
(
3
−
1
/
3
x
)
.
{\displaystyle \operatorname {Fi} ({\tfrac {1}{3}},{\tfrac {1}{3}};x)=3^{2/3}\pi \operatorname {Hi} (3^{-1/3}x).}
Asymptotics
For
x
→
∞
{\displaystyle x\to \infty }
we have the following asymptotics
Fi
(
α
,
β
;
−
x
)
∼
Γ
(
β
/
α
)
α
y
β
/
α
,
{\displaystyle \operatorname {Fi} (\alpha ,\beta ;-x)\sim {\frac {\Gamma (\beta /\alpha )}{\alpha y^{\beta /\alpha }}},}
Fi
(
α
,
β
;
x
)
∼
(
2
π
1
−
α
)
1
/
2
(
α
x
)
(
2
β
−
1
)
/
(
2
−
2
α
)
exp
(
(
1
−
α
)
(
α
α
y
)
1
/
(
1
−
α
)
)
.
{\displaystyle \operatorname {Fi} (\alpha ,\beta ;x)\sim \left({\frac {2\pi }{1-\alpha }}\right)^{1/2}(\alpha x)^{(2\beta -1)/(2-2\alpha )}\exp \left((1-\alpha )(\alpha ^{\alpha }y)^{1/(1-\alpha )}\right).}
References
Olver, Frank W. J. (1997). Asymptotics and Special Functions . A K Peters/CRC Press. p. 332. doi :10.1201/9781439864548 . ISBN 978-0-429-06461-6 .
Faxén, Hilding (1921). Einwirkung der Gefässwände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit (PhD). Uppsala University .
Paris, Richard Bruce (2010). "Asymptotic expansion of n-dimensional Faxén-type integrals" . European Journal of Pure and Applied Mathematics . 3 (6). A K Peters/CRC Press: 1006–1031.
Kaminski, David; Paris, Richard B. (1997). "Asymptotics via iterated Mellin–Barnes integrals: Application to the generalised Faxén integral" . Methods and Applications of Analysis . 4 (3): 311–325. doi :10.4310/MAA.1997.v4.n3.a5 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑