Misplaced Pages

Flexible debris-resisting barrier

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Flexible debris-resisting barrier" – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to remove this message)

A flexible debris-resisting barrier is a structure used to mitigate debris flows or to contain flow-entrained woods. These structures mainly consist of interconnected metallic components (cables, posts, shackles...). Flexible debris-resisting barrier are derived from rockfall barriers and were first proposed in the middle of the 1990s in the USA.

In torrents, flexible debris-resisting barrier constitute a sound alternative to check dams for containing debris flows.

The main components of flexible debris-resisting barriers are:

  • An interception structure, made up of a principal net with metallic cables, wires, and/or bars and additional layers, usually a finer mesh than the principal.
  • A support structure made of metal posts, to support the interception structure.
  • Connection components (also called brakes), which dissipate energy from the barrier into the ground and/or foundation.

These barriers are often installed in torrents bed to intercept and contain flow-entrained granular materials or woody debris. In their simplest form, flexible debris-resisting barriers only consist of an interception structure. When installed in larger channels, the barrier also includes a support structure.

See also

References

  1. Vagnon, Federico; Segalini, Andrea; Ferrero, Anna Maria (2015-01-01). "Studies of Flexible Barriers Under Debris Flow Impact: An Application to an Alpine Basin" (PDF). Procedia Earth and Planetary Science. 15: 165–172. Bibcode:2015PrEPS..15..165V. doi:10.1016/j.proeps.2015.08.041. ISSN 1878-5220.
  2. "Canadian Science Publishing". doi:10.1139/cgj-2015-0481. {{cite journal}}: Cite journal requires |journal= (help)
  3. Albaba, Adel; Lambert, Stéphane; Kneib, François; Chareyre, Bruno; Nicot, François (November 2017). "DEM Modeling of a Flexible Barrier Impacted by a Dry Granular Flow". Rock Mechanics and Rock Engineering. 50 (11): 3029–3048. Bibcode:2017RMRE...50.3029A. doi:10.1007/s00603-017-1286-z. ISSN 0723-2632. S2CID 133741753.
  4. Wendeler, Corinna; Volkwein, Axel; McArdell, Brian W.; Bartelt, Perry (June 2019). "Load model for designing flexible steel barriers for debris flow mitigation". Canadian Geotechnical Journal. 56 (6): 893–910. doi:10.1139/cgj-2016-0157. hdl:1807/94649. ISSN 0008-3674. S2CID 133889177.
  5. Song, D.; Choi, C. E.; Ng, C. W. W.; Zhou, G. G. D. (2018-01-01). "Geophysical flows impacting a flexible barrier: effects of solid-fluid interaction". Landslides. 15 (1): 99–110. doi:10.1007/s10346-017-0856-1. ISSN 1612-5118. S2CID 3527695.
Category: