Misplaced Pages

FreeON

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Not to be confused with Freon.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
The topic of this article may not meet Misplaced Pages's notability guidelines for products and services. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "FreeON" – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this message)
A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Misplaced Pages's content policies, particularly neutral point of view. Please discuss further on the talk page. (October 2021) (Learn how and when to remove this message)
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources.
Find sources: "FreeON" – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this message)
(Learn how and when to remove this message)
FreeON
Stable release1.0.8 / November 8, 2013; 11 years ago (2013-11-08)
Written inFortran, C
Operating systemLinux, FreeBSD, Unix and like operating systems
TypeComputational Chemistry
LicenseGNU GPLv3
Website

In computer software, FreeON is an experimental, open source (GPL) suite of programs for linear scaling quantum chemistry, formerly known as MondoSCF. It is highly modular, and has been written from scratch for N-scaling SCF theory in Fortran95 and C. Platform independent IO is supported with HDF5. FreeON should compile with most modern Linux distributions. FreeON performs Hartree–Fock, pure density functional, and hybrid HF/DFT calculations (e.g. B3LYP) in a Cartesian-Gaussian LCAO basis. All algorithms are O(N) or O(N lg N) for non-metallic systems. Periodic boundary conditions in 1, 2 and 3 dimensions have been implemented through the Lorentz field ( Γ {\displaystyle \Gamma } -point), and an internal coordinate geometry optimizer allows full (atom+cell) relaxation using analytic derivatives. Effective core potentials for energies and forces have been implemented, but Effective Core Potential (ECP) lattice forces do not work yet. Advanced features include O(N) static and dynamic response, as well as time reversible Born Oppenheimer Molecular Dynamics (MD).

Developers

Developer Affiliation
Matt Challacombe Los Alamos National Laboratory
Eric Schwegler Lawrence Livermore National Laboratory
Jessica Tymczak Houston Community College
Anders M. Niklasson Los Alamos National Laboratory
Anders Odell KTH Stockholm
Nicolas Bock Los Alamos National Laboratory
Karoly Nemeth Argonne National Laboratory
Valery Weber University of Zurich
C. K. Gan Institute for High Performance Computing
Graeme Henkelman University of Texas at Austin
Robert Snavely University of Santa Cruz

See also

References

  1. Challacombe, M.; Schwegler, E.; Almlöf, J. (1996). "Fast assembly of the Coulomb matrix: A quantum chemical tree code". The Journal of Chemical Physics. 104 (12): 4685. Bibcode:1996JChPh.104.4685C. doi:10.1063/1.471163.
  2. Schwegler, E.; Challacombe, M. (1996). "Linear scaling computation of the Hartree–Fock exchange matrix". The Journal of Chemical Physics. 105 (7): 2726. Bibcode:1996JChPh.105.2726S. doi:10.1063/1.472135.
  3. Challacombe, M.; Schwegler, E. (1997). "Linear scaling computation of the Fock matrix". The Journal of Chemical Physics. 106 (13): 5526. Bibcode:1997JChPh.106.5526C. doi:10.1063/1.473575.
  4. Schwegler, E.; Challacombe, M.; Head-Gordon, M. (1997). "Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build". The Journal of Chemical Physics. 106 (23): 9708. Bibcode:1997JChPh.106.9708S. doi:10.1063/1.473833.
  5. Schwegler, E.; Challacombe, M. (1999). "Linear scaling computation of the Fock matrix. IV. Multipole accelerated formation of the exchange matrix". The Journal of Chemical Physics. 111 (14): 6223. Bibcode:1999JChPh.111.6223S. doi:10.1063/1.479926.
  6. Schwegler, E.; Challacombe, M. (2000). "Linear scaling computation of the Fock matrix. III. Formation of the exchange matrix with permutational symmetry". Theoretical Chemistry Accounts: Theory, Computation, and Modeling. 104 (5): 344. doi:10.1007/s002140000127. S2CID 94597829.
  7. Challacombe, M. (2000). "Linear scaling computation of the Fock matrix. V. Hierarchical Cubature for numerical integration of the exchange-correlation matrix". The Journal of Chemical Physics. 113 (22): 10037–10043. Bibcode:2000JChPh.11310037C. doi:10.1063/1.1316012.
Computational chemistry software
Cheminformatics
Free software
Proprietary
Chemical kinetics
Free software
Proprietary
Molecular modelling
and
visualization
List of molecular graphics systems
Free software
Proprietary
Molecular dockingList of protein-ligand docking software
Free software
Proprietary
Molecular dynamics
Free software
Proprietary
Quantum chemistryList of quantum chemistry and solid-state physics software
Free software
Proprietary
Skeletal structure drawing
Free software
Proprietary
Others
Portals: Category: