Misplaced Pages

Free entropy

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Thermodynamic potential of entropy, analogous to the free energy
Thermodynamics
The classical Carnot heat engine
Branches
Laws
Systems
State
Processes
Cycles
System propertiesNote: Conjugate variables in italics
Process functions
Functions of state
Material properties
Specific heat capacity  c = {\displaystyle c=}
T {\displaystyle T} S {\displaystyle \partial S}
N {\displaystyle N} T {\displaystyle \partial T}
Compressibility  β = {\displaystyle \beta =-}
1 {\displaystyle 1} V {\displaystyle \partial V}
V {\displaystyle V} p {\displaystyle \partial p}
Thermal expansion  α = {\displaystyle \alpha =}
1 {\displaystyle 1} V {\displaystyle \partial V}
V {\displaystyle V} T {\displaystyle \partial T}
Equations
Potentials
  • History
  • Culture
History
Philosophy
Theories
Key publications
Timelines
  • Art
  • Education
Scientists
Other

A thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy. Also known as a Massieu, Planck, or Massieu–Planck potentials (or functions), or (rarely) free information. In statistical mechanics, free entropies frequently appear as the logarithm of a partition function. The Onsager reciprocal relations in particular, are developed in terms of entropic potentials. In mathematics, free entropy means something quite different: it is a generalization of entropy defined in the subject of free probability.

A free entropy is generated by a Legendre transformation of the entropy. The different potentials correspond to different constraints to which the system may be subjected.

Examples

See also: List of thermodynamic properties

The most common examples are:

Name Function Alt. function Natural variables
Entropy d S = 1 T d U + P T d V i = 1 s μ i T d N i {\displaystyle dS={\frac {1}{T}}dU+{\frac {P}{T}}dV-\sum _{i=1}^{s}{\frac {\mu _{i}}{T}}dN_{i}\,}           U , V , { N i } {\displaystyle ~~~~~U,V,\{N_{i}\}\,}
Massieu potential \ Helmholtz free entropy Φ = S 1 T U {\displaystyle \Phi =S-{\frac {1}{T}}U} = A T {\displaystyle =-{\frac {A}{T}}}           1 T , V , { N i } {\displaystyle ~~~~~{\frac {1}{T}},V,\{N_{i}\}\,}
Planck potential \ Gibbs free entropy Ξ = Φ P T V {\displaystyle \Xi =\Phi -{\frac {P}{T}}V} = G T {\displaystyle =-{\frac {G}{T}}}           1 T , P T , { N i } {\displaystyle ~~~~~{\frac {1}{T}},{\frac {P}{T}},\{N_{i}\}\,}

where

S {\displaystyle S} is entropy
Φ {\displaystyle \Phi } is the Massieu potential
Ξ {\displaystyle \Xi } is the Planck potential
U {\displaystyle U} is internal energy
T {\displaystyle T} is temperature
P {\displaystyle P} is pressure
V {\displaystyle V} is volume
A {\displaystyle A} is Helmholtz free energy
G {\displaystyle G} is Gibbs free energy
N i {\displaystyle N_{i}} is number of particles (or number of moles) composing the i-th chemical component
μ i {\displaystyle \mu _{i}} is the chemical potential of the i-th chemical component
s {\displaystyle s} is the total number of components
i {\displaystyle i} is the i {\displaystyle i} components.

Note that the use of the terms "Massieu" and "Planck" for explicit Massieu-Planck potentials are somewhat obscure and ambiguous. In particular "Planck potential" has alternative meanings. The most standard notation for an entropic potential is ψ {\displaystyle \psi } , used by both Planck and Schrödinger. (Note that Gibbs used ψ {\displaystyle \psi } to denote the free energy.) Free entropies were invented by French engineer François Massieu in 1869, and actually predate Gibbs's free energy (1875).

Dependence of the potentials on the natural variables

Entropy

S = S ( U , V , { N i } ) {\displaystyle S=S(U,V,\{N_{i}\})}

By the definition of a total differential,

d S = S U d U + S V d V + i = 1 s S N i d N i . {\displaystyle dS={\frac {\partial S}{\partial U}}dU+{\frac {\partial S}{\partial V}}dV+\sum _{i=1}^{s}{\frac {\partial S}{\partial N_{i}}}dN_{i}.}

From the equations of state,

d S = 1 T d U + P T d V + i = 1 s ( μ i T ) d N i . {\displaystyle dS={\frac {1}{T}}dU+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}.}

The differentials in the above equation are all of extensive variables, so they may be integrated to yield

S = U T + P V T + i = 1 s ( μ i N T ) + constant . {\displaystyle S={\frac {U}{T}}+{\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)+{\textrm {constant}}.}

Massieu potential / Helmholtz free entropy

Φ = S U T {\displaystyle \Phi =S-{\frac {U}{T}}}
Φ = U T + P V T + i = 1 s ( μ i N T ) U T {\displaystyle \Phi ={\frac {U}{T}}+{\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)-{\frac {U}{T}}}
Φ = P V T + i = 1 s ( μ i N T ) {\displaystyle \Phi ={\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)}

Starting over at the definition of Φ {\displaystyle \Phi } and taking the total differential, we have via a Legendre transform (and the chain rule)

d Φ = d S 1 T d U U d 1 T , {\displaystyle d\Phi =dS-{\frac {1}{T}}dU-Ud{\frac {1}{T}},}
d Φ = 1 T d U + P T d V + i = 1 s ( μ i T ) d N i 1 T d U U d 1 T , {\displaystyle d\Phi ={\frac {1}{T}}dU+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {1}{T}}dU-Ud{\frac {1}{T}},}
d Φ = U d 1 T + P T d V + i = 1 s ( μ i T ) d N i . {\displaystyle d\Phi =-Ud{\frac {1}{T}}+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}.}

The above differentials are not all of extensive variables, so the equation may not be directly integrated. From d Φ {\displaystyle d\Phi } we see that

Φ = Φ ( 1 T , V , { N i } ) . {\displaystyle \Phi =\Phi ({\frac {1}{T}},V,\{N_{i}\}).}

If reciprocal variables are not desired,

d Φ = d S T d U U d T T 2 , {\displaystyle d\Phi =dS-{\frac {TdU-UdT}{T^{2}}},}
d Φ = d S 1 T d U + U T 2 d T , {\displaystyle d\Phi =dS-{\frac {1}{T}}dU+{\frac {U}{T^{2}}}dT,}
d Φ = 1 T d U + P T d V + i = 1 s ( μ i T ) d N i 1 T d U + U T 2 d T , {\displaystyle d\Phi ={\frac {1}{T}}dU+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {1}{T}}dU+{\frac {U}{T^{2}}}dT,}
d Φ = U T 2 d T + P T d V + i = 1 s ( μ i T ) d N i , {\displaystyle d\Phi ={\frac {U}{T^{2}}}dT+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i},}
Φ = Φ ( T , V , { N i } ) . {\displaystyle \Phi =\Phi (T,V,\{N_{i}\}).}

Planck potential / Gibbs free entropy

Ξ = Φ P V T {\displaystyle \Xi =\Phi -{\frac {PV}{T}}}
Ξ = P V T + i = 1 s ( μ i N T ) P V T {\displaystyle \Xi ={\frac {PV}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)-{\frac {PV}{T}}}
Ξ = i = 1 s ( μ i N T ) {\displaystyle \Xi =\sum _{i=1}^{s}\left(-{\frac {\mu _{i}N}{T}}\right)}

Starting over at the definition of Ξ {\displaystyle \Xi } and taking the total differential, we have via a Legendre transform (and the chain rule)

d Ξ = d Φ P T d V V d P T {\displaystyle d\Xi =d\Phi -{\frac {P}{T}}dV-Vd{\frac {P}{T}}}
d Ξ = U d 2 T + P T d V + i = 1 s ( μ i T ) d N i P T d V V d P T {\displaystyle d\Xi =-Ud{\frac {2}{T}}+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {P}{T}}dV-Vd{\frac {P}{T}}}
d Ξ = U d 1 T V d P T + i = 1 s ( μ i T ) d N i . {\displaystyle d\Xi =-Ud{\frac {1}{T}}-Vd{\frac {P}{T}}+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}.}

The above differentials are not all of extensive variables, so the equation may not be directly integrated. From d Ξ {\displaystyle d\Xi } we see that

Ξ = Ξ ( 1 T , P T , { N i } ) . {\displaystyle \Xi =\Xi \left({\frac {1}{T}},{\frac {P}{T}},\{N_{i}\}\right).}

If reciprocal variables are not desired,

d Ξ = d Φ T ( P d V + V d P ) P V d T T 2 , {\displaystyle d\Xi =d\Phi -{\frac {T(PdV+VdP)-PVdT}{T^{2}}},}
d Ξ = d Φ P T d V V T d P + P V T 2 d T , {\displaystyle d\Xi =d\Phi -{\frac {P}{T}}dV-{\frac {V}{T}}dP+{\frac {PV}{T^{2}}}dT,}
d Ξ = U T 2 d T + P T d V + i = 1 s ( μ i T ) d N i P T d V V T d P + P V T 2 d T , {\displaystyle d\Xi ={\frac {U}{T^{2}}}dT+{\frac {P}{T}}dV+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i}-{\frac {P}{T}}dV-{\frac {V}{T}}dP+{\frac {PV}{T^{2}}}dT,}
d Ξ = U + P V T 2 d T V T d P + i = 1 s ( μ i T ) d N i , {\displaystyle d\Xi ={\frac {U+PV}{T^{2}}}dT-{\frac {V}{T}}dP+\sum _{i=1}^{s}\left(-{\frac {\mu _{i}}{T}}\right)dN_{i},}
Ξ = Ξ ( T , P , { N i } ) . {\displaystyle \Xi =\Xi (T,P,\{N_{i}\}).}

References

  1. ^ Antoni Planes; Eduard Vives (2000-10-24). "Entropic variables and Massieu-Planck functions". Entropic Formulation of Statistical Mechanics. Universitat de Barcelona. Archived from the original on 2008-10-11. Retrieved 2007-09-18.
  2. T. Wada; A.M. Scarfone (December 2004). "Connections between Tsallis' formalisms employing the standard linear average energy and ones employing the normalized q-average energy". Physics Letters A. 335 (5–6): 351–362. arXiv:cond-mat/0410527. Bibcode:2005PhLA..335..351W. doi:10.1016/j.physleta.2004.12.054. S2CID 17101164.
  3. ^ The Collected Papers of Peter J. W. Debye. New York, New York: Interscience Publishers, Inc. 1954.

Bibliography

  • Massieu, M.F. (1869). "Compt. Rend". 69 (858): 1057. {{cite journal}}: Cite journal requires |journal= (help)
Category: