In mathematics, the Fubini–Study metric (IPA: /fubini-ʃtuːdi/) is a Kähler metric on a complex projective space CP endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.
A Hermitian form in (the vector space) C defines a unitary subgroup U(n+1) in GL(n+1,C). A Fubini–Study metric is determined up to homothety (overall scaling) by invariance under such a U(n+1) action; thus it is homogeneous. Equipped with a Fubini–Study metric, CP is a symmetric space. The particular normalization on the metric depends on the application. In Riemannian geometry, one uses a normalization so that the Fubini–Study metric simply relates to the standard metric on the (2n+1)-sphere. In algebraic geometry, one uses a normalization making CP a Hodge manifold.
Construction
The Fubini–Study metric arises naturally in the quotient space construction of complex projective space.
Specifically, one may define CP to be the space consisting of all complex lines in C, i.e., the quotient of C\{0} by the equivalence relation relating all complex multiples of each point together. This agrees with the quotient by the diagonal group action of the multiplicative group C = C \ {0}:
This quotient realizes C\{0} as a complex line bundle over the base space CP. (In fact this is the so-called tautological bundle over CP.) A point of CP is thus identified with an equivalence class of (n+1)-tuples modulo nonzero complex rescaling; the Zi are called homogeneous coordinates of the point.
Furthermore, one may realize this quotient mapping in two steps: since multiplication by a nonzero complex scalar z = R e can be uniquely thought of as the composition of a dilation by the modulus R followed by a counterclockwise rotation about the origin by an angle , the quotient mapping C → CP splits into two pieces.
where step (a) is a quotient by the dilation Z ~ RZ for R ∈ R, the multiplicative group of positive real numbers, and step (b) is a quotient by the rotations Z ~ eZ.
The result of the quotient in (a) is the real hypersphere S defined by the equation |Z| = |Z0| + ... + |Zn| = 1. The quotient in (b) realizes CP = S/S, where S represents the group of rotations. This quotient is realized explicitly by the famous Hopf fibration S → S → CP, the fibers of which are among the great circles of .
As a metric quotient
When a quotient is taken of a Riemannian manifold (or metric space in general), care must be taken to ensure that the quotient space is endowed with a metric that is well-defined. For instance, if a group G acts on a Riemannian manifold (X,g), then in order for the orbit space X/G to possess an induced metric, must be constant along G-orbits in the sense that for any element h ∈ G and pair of vector fields we must have g(Xh,Yh) = g(X,Y).
The standard Hermitian metric on C is given in the standard basis by
whose realification is the standard Euclidean metric on R. This metric is not invariant under the diagonal action of C, so we are unable to directly push it down to CP in the quotient. However, this metric is invariant under the diagonal action of S = U(1), the group of rotations. Therefore, step (b) in the above construction is possible once step (a) is accomplished.
The Fubini–Study metric is the metric induced on the quotient CP = S/S, where carries the so-called "round metric" endowed upon it by restriction of the standard Euclidean metric to the unit hypersphere.
In local affine coordinates
Corresponding to a point in CP with homogeneous coordinates , there is a unique set of n coordinates such that
provided ; specifically, . The form an affine coordinate system for CP in the coordinate patch . One can develop an affine coordinate system in any of the coordinate patches by dividing instead by in the obvious manner. The n+1 coordinate patches cover CP, and it is possible to give the metric explicitly in terms of the affine coordinates on . The coordinate derivatives define a frame of the holomorphic tangent bundle of CP, in terms of which the Fubini–Study metric has Hermitian components
where |z| = |z1| + ... + |zn|. That is, the Hermitian matrix of the Fubini–Study metric in this frame is
Note that each matrix element is unitary-invariant: the diagonal action will leave this matrix unchanged.
Accordingly, the line element is given by
In this last expression, the summation convention is used to sum over Latin indices i,j that range from 1 to n.
The metric can be derived from the following Kähler potential:
as
Using homogeneous coordinates
An expression is also possible in the notation of homogeneous coordinates, commonly used to describe projective varieties of algebraic geometry: Z = . Formally, subject to suitably interpreting the expressions involved, one has
Here the summation convention is used to sum over Greek indices α β ranging from 0 to n, and in the last equality the standard notation for the skew part of a tensor is used:
Now, this expression for ds apparently defines a tensor on the total space of the tautological bundle C\{0}. It is to be understood properly as a tensor on CP by pulling it back along a holomorphic section σ of the tautological bundle of CP. It remains then to verify that the value of the pullback is independent of the choice of section: this can be done by a direct calculation.
The Kähler form of this metric is
where the are the Dolbeault operators. The pullback of this is clearly independent of the choice of holomorphic section. The quantity log|Z| is the Kähler potential (sometimes called the Kähler scalar) of CP.
In bra-ket coordinate notation
In quantum mechanics, the Fubini–Study metric is also known as the Bures metric. However, the Bures metric is typically defined in the notation of mixed states, whereas the exposition below is written in terms of a pure state. The real part of the metric is (a quarter of) the Fisher information metric.
The Fubini–Study metric may be written using the bra–ket notation commonly used in quantum mechanics. To explicitly equate this notation to the homogeneous coordinates given above, let
where is a set of orthonormal basis vectors for Hilbert space, the are complex numbers, and is the standard notation for a point in the projective space CP in homogeneous coordinates. Then, given two points and in the space, the distance (length of a geodesic) between them is
or, equivalently, in projective variety notation,
Here, is the complex conjugate of . The appearance of in the denominator is a reminder that and likewise were not normalized to unit length; thus the normalization is made explicit here. In Hilbert space, the metric can be interpreted as the angle between two vectors; thus it is occasionally called the quantum angle. The angle is real-valued, and runs from 0 to .
The infinitesimal form of this metric may be quickly obtained by taking , or equivalently, to obtain
In the context of quantum mechanics, CP is called the Bloch sphere; the Fubini–Study metric is the natural metric for the geometrization of quantum mechanics. Much of the peculiar behaviour of quantum mechanics, including quantum entanglement and the Berry phase effect, can be attributed to the peculiarities of the Fubini–Study metric.
The n = 1 case
When n = 1, there is a diffeomorphism given by stereographic projection. This leads to the "special" Hopf fibration S → S → S. When the Fubini–Study metric is written in coordinates on CP, its restriction to the real tangent bundle yields an expression of the ordinary "round metric" of radius 1/2 (and Gaussian curvature 4) on S.
Namely, if z = x + iy is the standard affine coordinate chart on the Riemann sphere CP and x = r cos θ, y = r sin θ are polar coordinates on C, then a routine computation shows
where is the round metric on the unit 2-sphere. Here φ, θ are "mathematician's spherical coordinates" on S coming from the stereographic projection r tan(φ/2) = 1, tan θ = y/x. (Many physics references interchange the roles of φ and θ.)
The Kähler form is
Choosing as vierbeins and , the Kähler form simplifies to
Applying the Hodge star to the Kähler form, one obtains
implying that K is harmonic.
The n = 2 case
The Fubini–Study metric on the complex projective plane CP has been proposed as a gravitational instanton, the gravitational analog of an instanton. The metric, the connection form and the curvature are readily computed, once suitable real 4D coordinates are established. Writing for real Cartesian coordinates, one then defines polar coordinate one-forms on the 4-sphere (the quaternionic projective line) as
The are the standard left-invariant one-form coordinate frame on the Lie group ; that is, they obey for and cyclic permutations.
The corresponding local affine coordinates are and then provide
with the usual abbreviations that and .
The line element, starting with the previously given expression, is given by
The vierbeins can be immediately read off from the last expression:
That is, in the vierbein coordinate system, using roman-letter subscripts, the metric tensor is Euclidean:
Given the vierbein, a spin connection can be computed; the Levi-Civita spin connection is the unique connection that is torsion-free and covariantly constant, namely, it is the one-form that satisfies the torsion-free condition
and is covariantly constant, which, for spin connections, means that it is antisymmetric in the vierbein indexes:
The above is readily solved; one obtains
The curvature 2-form is defined as
and is constant:
The Ricci tensor in veirbein indexes is given by
where the curvature 2-form was expanded as a four-component tensor:
The resulting Ricci tensor is constant
so that the resulting Einstein equation
can be solved with the cosmological constant .
The Weyl tensor for Fubini–Study metrics in general is given by
For the n = 2 case, the two-forms
are self-dual:
Curvature properties
In the n = 1 special case, the Fubini–Study metric has constant sectional curvature identically equal to 4, according to the equivalence with the 2-sphere's round metric (which given a radius R has sectional curvature ). However, for n > 1, the Fubini–Study metric does not have constant curvature. Its sectional curvature is instead given by the equation
where is an orthonormal basis of the 2-plane σ, the mapping J : TCP → TCP is the complex structure on CP, and is the Fubini–Study metric.
A consequence of this formula is that the sectional curvature satisfies for all 2-planes . The maximum sectional curvature (4) is attained at a holomorphic 2-plane — one for which J(σ) ⊂ σ — while the minimum sectional curvature (1) is attained at a 2-plane for which J(σ) is orthogonal to σ. For this reason, the Fubini–Study metric is often said to have "constant holomorphic sectional curvature" equal to 4.
This makes CP a (non-strict) quarter pinched manifold; a celebrated theorem shows that a strictly quarter-pinched simply connected n-manifold must be homeomorphic to a sphere.
The Fubini–Study metric is also an Einstein metric in that it is proportional to its own Ricci tensor: there exists a constant ; such that for all i,j we have
This implies, among other things, that the Fubini–Study metric remains unchanged up to a scalar multiple under the Ricci flow. It also makes CP indispensable to the theory of general relativity, where it serves as a nontrivial solution to the vacuum Einstein field equations.
The cosmological constant for CP is given in terms of the dimension of the space:
Product metric
The common notions of separability apply for the Fubini–Study metric. More precisely, the metric is separable on the natural product of projective spaces, the Segre embedding. That is, if is a separable state, so that it can be written as , then the metric is the sum of the metric on the subspaces:
where and are the metrics, respectively, on the subspaces A and B.
Connection and curvature
The fact that the metric can be derived from the Kähler potential means that the Christoffel symbols and the curvature tensors contain a lot of symmetries, and can be given a particularly simple form: The Christoffel symbols, in the local affine coordinates, are given by
The Riemann tensor is also particularly simple:
The Ricci tensor is
See also
References
- G. Fubini, "Sulle metriche definite da una forma Hermitiana", (1904) Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti, 63 pp. 501–513
- Study, E. (1905). "Kürzeste Wege im komplexen Gebiet". Mathematische Annalen (in German). 60 (3). Springer Science and Business Media LLC: 321–378. doi:10.1007/bf01457616. ISSN 0025-5831. S2CID 120961275.
- ^ Eguchi, Tohru; Gilkey, Peter B.; Hanson, Andrew J. (1980). "Gravitation, gauge theories and differential geometry". Physics Reports. 66 (6). Elsevier BV: 213–393. Bibcode:1980PhR....66..213E. doi:10.1016/0370-1573(80)90130-1. ISSN 0370-1573.
- ^ Paolo Facchi, Ravi Kulkarni, V. I. Man'ko, Giuseppe Marmo, E. C. G. Sudarshan, Franco Ventriglia "Classical and Quantum Fisher Information in the Geometrical Formulation of Quantum Mechanics" (2010), Physics Letters A 374 pp. 4801. doi:10.1016/j.physleta.2010.10.005
- Eguchi, Tohru; Freund, Peter G. O. (1976-11-08). "Quantum Gravity and World Topology". Physical Review Letters. 37 (19). American Physical Society (APS): 1251–1254. Bibcode:1976PhRvL..37.1251E. doi:10.1103/physrevlett.37.1251. ISSN 0031-9007.
- Sakai, T. Riemannian Geometry, Translations of Mathematical Monographs No. 149 (1995), American Mathematics Society.
- Andrew J. Hanson, Ji-PingSha, "Visualizing the K3 Surface" (2006)
- Besse, Arthur L. (1987), Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) , vol. 10, Berlin, New York: Springer-Verlag, pp. xii+510, ISBN 978-3-540-15279-8
- Brody, D.C.; Hughston, L.P. (2001), "Geometric Quantum Mechanics", Journal of Geometry and Physics, 38 (1): 19–53, arXiv:quant-ph/9906086, Bibcode:2001JGP....38...19B, doi:10.1016/S0393-0440(00)00052-8, S2CID 17580350
- Griffiths, P.; Harris, J. (1994), Principles of Algebraic Geometry, Wiley Classics Library, Wiley Interscience, pp. 30–31, ISBN 0-471-05059-8
- Onishchik, A.L. (2001) , "Fubini–Study metric", Encyclopedia of Mathematics, EMS Press.