Misplaced Pages

Full Domain Hash

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Full domain hash) Cryptographic signature scheme

In cryptography, the Full Domain Hash (FDH) is an RSA-based signature scheme that follows the hash-and-sign paradigm. It is provably secure (i.e., is existentially unforgeable under adaptive chosen-message attacks) in the random oracle model. FDH involves hashing a message using a function whose image size equals the size of the RSA modulus, and then raising the result to the secret RSA exponent.

Exact security of full domain hash

In the random oracle model, if RSA is ( t , ϵ ) {\displaystyle (t',\epsilon ')} -secure, then the full domain hash RSA signature scheme is ( t , ϵ ) {\displaystyle (t,\epsilon )} -secure where,

t = t ( q hash + q sig + 1 ) O ( k 3 ) ϵ = ( 1 + 1 q sig ) q sig + 1 q sig ϵ {\displaystyle {\begin{aligned}t&=t'-(q_{\text{hash}}+q_{\text{sig}}+1)\cdot {\mathcal {O}}\left(k^{3}\right)\\\epsilon &=\left(1+{\frac {1}{q_{\text{sig}}}}\right)^{q_{\text{sig}}+1}\cdot q_{\text{sig}}\cdot \epsilon '\end{aligned}}} .

For large q sig {\displaystyle q_{\text{sig}}} this reduces to ϵ exp ( 1 ) q sig ϵ {\displaystyle \epsilon \sim \exp(1)\cdot q_{\text{sig}}\cdot \epsilon '} .

This means that if there exists an algorithm that can forge a new FDH signature that runs in time t, computes at most q hash {\displaystyle q_{\text{hash}}} hashes, asks for at most q sig {\displaystyle q_{\text{sig}}} signatures and succeeds with probability ϵ {\displaystyle \epsilon } , then there must also exist an algorithm that breaks RSA with probability ϵ {\displaystyle \epsilon '} in time t {\displaystyle t'} .

References

  • Jean-Sébastien Coron(AF): On the Exact Security of Full Domain Hash. CRYPTO 2000: pp. 229–235 (PDF)
  • Mihir Bellare, Phillip Rogaway: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. EUROCRYPT 1996: pp. 399–416 (PDF)
Stub icon

This cryptography-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: