Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
In single-variable differential calculus, the fundamental increment lemma is an immediate consequence of the definition of the derivative of a function at a point :
The lemma asserts that the existence of this derivative implies the existence of a function such that
for sufficiently small but non-zero . For a proof, it suffices to define
and verify this meets the requirements.
The lemma says, at least when is sufficiently close to zero, that the difference quotient
can be written as the derivative f' plus an error term that vanishes at .
That is, one has
Differentiability in higher dimensions
In that the existence of uniquely characterises the number , the fundamental increment lemma can be said to characterise the differentiability of single-variable functions. For this reason, a generalisation of the lemma can be used in the definition of differentiability in multivariable calculus. In particular, suppose f maps some subset of to . Then f is said to be differentiable at a if there is a linear function