Misplaced Pages

GIM mechanism

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In particle physics, the GIM mechanism (or Glashow–Iliopoulos–Maiani mechanism) is allegedly the mechanism through which flavour-changing neutral currents (FCNCs) are suppressed in loop diagrams. It also explains why weak interactions that change strangeness by 2 (ΔS = 2 transitions) are suppressed, while those that change strangeness by 1 (ΔS = 1 transitions) are allowed, but only in charged current interactions.

Rare leptonic decay of the neutral Kaon predicated on the GIM mechanism

History

The mechanism was put forth in a famous paper by Glashow, Iliopoulos & Maiani (1970); at that time, only three quarks (up, down, and strange) were thought to exist. Bjorken & Glashow (1964) had previously predicted a fourth quark, but there was little evidence for its existence. The GIM mechanism however, required the existence of a fourth quark, and the prediction of the charm quark is usually credited to Glashow, Iliopoulos, & Maiani (initials "G I M").

Description

The mechanism relies on the unitarity of the charged weak current flavor mixing matrix, which enters in the two vertices of a one-loop box diagram involving W boson exchanges. Even though Z boson exchanges are flavor-neutral (i.e. prohibit FCNC), the box diagram induces FCNC, but at a very small level. The smallness is set by the mass-squared difference of the different virtual quarks exchanged in the box diagram, originally the u-c quarks, on the scale of the W mass.

The smallness of this quantity accounts for the suppressed induced FCNC, dictating a rare decay, K L μ + μ {\displaystyle K_{L}\to \mu ^{+}\mu ^{-}} , illustrated in the figure. If that mass difference were ignorable, the minus sign between the two interfering box diagrams (itself a consequence of unitarity of the Cabibbo matrix) would lead to a complete cancellation, and thus a null effect.

References

  1. ^ Glashow, S.L.; Iliopoulos, J.; Maiani, L. (1970). "Weak interactions with lepton–hadron symmetry". Physical Review D. 2 (7): 1285. Bibcode:1970PhRvD...2.1285G. doi:10.1103/PhysRevD.2.1285.
  2. Bjorken, B.J.; Glashow, S.L. (1964). "Elementary particles and SU(4)". Physics Letters. 11 (3): 255–257. Bibcode:1964PhL....11..255B. doi:10.1016/0031-9163(64)90433-0.

Further reading

Category: