Misplaced Pages

Gaussian probability space

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In probability theory particularly in the Malliavin calculus, a Gaussian probability space is a probability space together with a Hilbert space of mean zero, real-valued Gaussian random variables. Important examples include the classical or abstract Wiener space with some suitable collection of Gaussian random variables.

Definition

A Gaussian probability space ( Ω , F , P , H , F H ) {\displaystyle (\Omega ,{\mathcal {F}},P,{\mathcal {H}},{\mathcal {F}}_{\mathcal {H}}^{\perp })} consists of

  • a (complete) probability space ( Ω , F , P ) {\displaystyle (\Omega ,{\mathcal {F}},P)} ,
  • a closed linear subspace H L 2 ( Ω , F , P ) {\displaystyle {\mathcal {H}}\subset L^{2}(\Omega ,{\mathcal {F}},P)} called the Gaussian space such that all X H {\displaystyle X\in {\mathcal {H}}} are mean zero Gaussian variables. Their σ-algebra is denoted as F H {\displaystyle {\mathcal {F}}_{\mathcal {H}}} .
  • a σ-algebra F H {\displaystyle {\mathcal {F}}_{\mathcal {H}}^{\perp }} called the transverse σ-algebra which is defined through
F = F H F H . {\displaystyle {\mathcal {F}}={\mathcal {F}}_{\mathcal {H}}\otimes {\mathcal {F}}_{\mathcal {H}}^{\perp }.}

Irreducibility

A Gaussian probability space is called irreducible if F = F H {\displaystyle {\mathcal {F}}={\mathcal {F}}_{\mathcal {H}}} . Such spaces are denoted as ( Ω , F , P , H ) {\displaystyle (\Omega ,{\mathcal {F}},P,{\mathcal {H}})} . Non-irreducible spaces are used to work on subspaces or to extend a given probability space. Irreducible Gaussian probability spaces are classified by the dimension of the Gaussian space H {\displaystyle {\mathcal {H}}} .

Subspaces

A subspace ( Ω , F , P , H 1 , A H 1 ) {\displaystyle (\Omega ,{\mathcal {F}},P,{\mathcal {H}}_{1},{\mathcal {A}}_{{\mathcal {H}}_{1}}^{\perp })} of a Gaussian probability space ( Ω , F , P , H , F H ) {\displaystyle (\Omega ,{\mathcal {F}},P,{\mathcal {H}},{\mathcal {F}}_{\mathcal {H}}^{\perp })} consists of

  • a closed subspace H 1 H {\displaystyle {\mathcal {H}}_{1}\subset {\mathcal {H}}} ,
  • a sub σ-algebra A H 1 F {\displaystyle {\mathcal {A}}_{{\mathcal {H}}_{1}}^{\perp }\subset {\mathcal {F}}} of transverse random variables such that A H 1 {\displaystyle {\mathcal {A}}_{{\mathcal {H}}_{1}}^{\perp }} and A H 1 {\displaystyle {\mathcal {A}}_{{\mathcal {H}}_{1}}} are independent, A = A H 1 A H 1 {\displaystyle {\mathcal {A}}={\mathcal {A}}_{{\mathcal {H}}_{1}}\otimes {\mathcal {A}}_{{\mathcal {H}}_{1}}^{\perp }} and A F H = A H 1 {\displaystyle {\mathcal {A}}\cap {\mathcal {F}}_{\mathcal {H}}^{\perp }={\mathcal {A}}_{{\mathcal {H}}_{1}}^{\perp }} .

Example:

Let ( Ω , F , P , H , F H ) {\displaystyle (\Omega ,{\mathcal {F}},P,{\mathcal {H}},{\mathcal {F}}_{\mathcal {H}}^{\perp })} be a Gaussian probability space with a closed subspace H 1 H {\displaystyle {\mathcal {H}}_{1}\subset {\mathcal {H}}} . Let V {\displaystyle V} be the orthogonal complement of H 1 {\displaystyle {\mathcal {H}}_{1}} in H {\displaystyle {\mathcal {H}}} . Since orthogonality implies independence between V {\displaystyle V} and H 1 {\displaystyle {\mathcal {H}}_{1}} , we have that A V {\displaystyle {\mathcal {A}}_{V}} is independent of A H 1 {\displaystyle {\mathcal {A}}_{{\mathcal {H}}_{1}}} . Define A H 1 {\displaystyle {\mathcal {A}}_{{\mathcal {H}}_{1}}^{\perp }} via A H 1 := σ ( A V , F H ) = A V F H {\displaystyle {\mathcal {A}}_{{\mathcal {H}}_{1}}^{\perp }:=\sigma ({\mathcal {A}}_{V},{\mathcal {F}}_{\mathcal {H}}^{\perp })={\mathcal {A}}_{V}\vee {\mathcal {F}}_{\mathcal {H}}^{\perp }} .

Remark

For G = L 2 ( Ω , F H , P ) {\displaystyle G=L^{2}(\Omega ,{\mathcal {F}}_{\mathcal {H}}^{\perp },P)} we have L 2 ( Ω , F , P ) = L 2 ( ( Ω , F H , P ) ; G ) {\displaystyle L^{2}(\Omega ,{\mathcal {F}},P)=L^{2}((\Omega ,{\mathcal {F}}_{\mathcal {H}},P);G)} .

Fundamental algebra

Given a Gaussian probability space ( Ω , F , P , H , F H ) {\displaystyle (\Omega ,{\mathcal {F}},P,{\mathcal {H}},{\mathcal {F}}_{\mathcal {H}}^{\perp })} one defines the algebra of cylindrical random variables

A H = { F = P ( X 1 , , X n ) : X i H } {\displaystyle \mathbb {A} _{\mathcal {H}}=\{F=P(X_{1},\dots ,X_{n}):X_{i}\in {\mathcal {H}}\}}

where P {\displaystyle P} is a polynomial in R [ X n , , X n ] {\displaystyle \mathbb {R} } and calls A H {\displaystyle \mathbb {A} _{\mathcal {H}}} the fundamental algebra. For any p < {\displaystyle p<\infty } it is true that A H L p ( Ω , F , P ) {\displaystyle \mathbb {A} _{\mathcal {H}}\subset L^{p}(\Omega ,{\mathcal {F}},P)} .

For an irreducible Gaussian probability ( Ω , F , P , H ) {\displaystyle (\Omega ,{\mathcal {F}},P,{\mathcal {H}})} the fundamental algebra A H {\displaystyle \mathbb {A} _{\mathcal {H}}} is a dense set in L p ( Ω , F , P ) {\displaystyle L^{p}(\Omega ,{\mathcal {F}},P)} for all p [ 1 , [ {\displaystyle p\in [1,\infty [} .

Numerical and Segal model

An irreducible Gaussian probability ( Ω , F , P , H ) {\displaystyle (\Omega ,{\mathcal {F}},P,{\mathcal {H}})} where a basis was chosen for H {\displaystyle {\mathcal {H}}} is called a numerical model. Two numerical models are isomorphic if their Gaussian spaces have the same dimension.

Given a separable Hilbert space G {\displaystyle {\mathcal {G}}} , there exists always a canoncial irreducible Gaussian probability space Seg ( G ) {\displaystyle \operatorname {Seg} ({\mathcal {G}})} called the Segal model (named after Irving Segal) with G {\displaystyle {\mathcal {G}}} as a Gaussian space. In this setting, one usually writes for an element g G {\displaystyle g\in {\mathcal {G}}} the associated Gaussian random variable in the Segal model as W ( g ) {\displaystyle W(g)} . The notation is that of an isornomal Gaussian process and typically the Gaussian space is defined through one. One can then easily choose an arbitrary Hilbert space G {\displaystyle G} and have the Gaussian space as G = { W ( g ) : g G } {\displaystyle {\mathcal {G}}=\{W(g):g\in G\}} .

Literature

References

  1. Malliavin, Paul (1997). Stochastic analysis. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-15074-6. ISBN 3-540-57024-1.
  2. Nualart, David (2013). The Malliavin calculus and related topics. New York: Springer. p. 3. doi:10.1007/978-1-4757-2437-0.
  3. ^ Malliavin, Paul (1997). Stochastic analysis. Berlin, Heidelberg: Springer. pp. 4–5. doi:10.1007/978-3-642-15074-6. ISBN 3-540-57024-1.
  4. ^ Malliavin, Paul (1997). Stochastic analysis. Berlin, Heidelberg: Springer. pp. 13–14. doi:10.1007/978-3-642-15074-6. ISBN 3-540-57024-1.
  5. Malliavin, Paul (1997). Stochastic analysis. Berlin, Heidelberg: Springer. p. 16. doi:10.1007/978-3-642-15074-6. ISBN 3-540-57024-1.
Category: