Misplaced Pages

Generalized context-free grammar

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Abstract language theory concept

Generalized context-free grammar (GCFG) is a grammar formalism that expands on context-free grammars by adding potentially non-context-free composition functions to rewrite rules. Head grammar (and its weak equivalents) is an instance of such a GCFG which is known to be especially adept at handling a wide variety of non-CF properties of natural language.

Description

A GCFG consists of two components: a set of composition functions that combine string tuples, and a set of rewrite rules. The composition functions all have the form f ( x 1 , . . . , x m , y 1 , . . . , y n , . . . ) = γ {\displaystyle f(\langle x_{1},...,x_{m}\rangle ,\langle y_{1},...,y_{n}\rangle ,...)=\gamma } , where γ {\displaystyle \gamma } is either a single string tuple, or some use of a (potentially different) composition function which reduces to a string tuple. Rewrite rules look like X f ( Y , Z , . . . ) {\displaystyle X\to f(Y,Z,...)} , where Y {\displaystyle Y} , Z {\displaystyle Z} , ... are string tuples or non-terminal symbols.

The rewrite semantics of GCFGs is fairly straightforward. An occurrence of a non-terminal symbol is rewritten using rewrite rules as in a context-free grammar, eventually yielding just compositions (composition functions applied to string tuples or other compositions). The composition functions are then applied, successively reducing the tuples to a single tuple.

Example

A simple translation of a context-free grammar into a GCFG can be performed in the following fashion. Given the grammar in (1), which generates the palindrome language { w w R : w { a , b } } {\displaystyle \{ww^{R}:w\in \{a,b\}^{*}\}} , where w R {\displaystyle w^{R}} is the string reverse of w {\displaystyle w} , we can define the composition function conc as in (2a) and the rewrite rules as in (2b).

S ϵ   |   a S a   |   b S b {\displaystyle S\to \epsilon ~|~aSa~|~bSb} 1
c o n c ( x , y , z ) = x y z {\displaystyle conc(\langle x\rangle ,\langle y\rangle ,\langle z\rangle )=\langle xyz\rangle } 2a
S c o n c ( ϵ , ϵ , ϵ )   |   c o n c ( a , S , a )   |   c o n c ( b , S , b ) {\displaystyle S\to conc(\langle \epsilon \rangle ,\langle \epsilon \rangle ,\langle \epsilon \rangle )~|~conc(\langle a\rangle ,S,\langle a\rangle )~|~conc(\langle b\rangle ,S,\langle b\rangle )} 2b

The CF production of abbbba is

S
aSa
abSba
abbSbba
abbbba

and the corresponding GCFG production is

S c o n c ( a , S , a ) {\displaystyle S\to conc(\langle a\rangle ,S,\langle a\rangle )}
c o n c ( a , c o n c ( b , S , b ) , a ) {\displaystyle conc(\langle a\rangle ,conc(\langle b\rangle ,S,\langle b\rangle ),\langle a\rangle )}
c o n c ( a , c o n c ( b , c o n c ( b , S , b ) , b ) , a ) {\displaystyle conc(\langle a\rangle ,conc(\langle b\rangle ,conc(\langle b\rangle ,S,\langle b\rangle ),\langle b\rangle ),\langle a\rangle )}
c o n c ( a , c o n c ( b , c o n c ( b , c o n c ( ϵ , ϵ , ϵ ) , b ) , b ) , a ) {\displaystyle conc(\langle a\rangle ,conc(\langle b\rangle ,conc(\langle b\rangle ,conc(\langle \epsilon \rangle ,\langle \epsilon \rangle ,\langle \epsilon \rangle ),\langle b\rangle ),\langle b\rangle ),\langle a\rangle )}
c o n c ( a , c o n c ( b , c o n c ( b , ϵ , b ) , b ) , a ) {\displaystyle conc(\langle a\rangle ,conc(\langle b\rangle ,conc(\langle b\rangle ,\langle \epsilon \rangle ,\langle b\rangle ),\langle b\rangle ),\langle a\rangle )}
c o n c ( a , c o n c ( b , b b , b ) , a ) {\displaystyle conc(\langle a\rangle ,conc(\langle b\rangle ,\langle bb\rangle ,\langle b\rangle ),\langle a\rangle )}
c o n c ( a , b b b b , a ) {\displaystyle conc(\langle a\rangle ,\langle bbbb\rangle ,\langle a\rangle )}
a b b b b a {\displaystyle \langle abbbba\rangle }

Linear Context-free Rewriting Systems (LCFRSs)

Weir (1988) describes two properties of composition functions, linearity and regularity. A function defined as f ( x 1 , . . . , x n ) = . . . {\displaystyle f(x_{1},...,x_{n})=...} is linear if and only if each variable appears at most once on either side of the =, making f ( x ) = g ( x , y ) {\displaystyle f(x)=g(x,y)} linear but not f ( x ) = g ( x , x ) {\displaystyle f(x)=g(x,x)} . A function defined as f ( x 1 , . . . , x n ) = . . . {\displaystyle f(x_{1},...,x_{n})=...} is regular if the left hand side and right hand side have exactly the same variables, making f ( x , y ) = g ( y , x ) {\displaystyle f(x,y)=g(y,x)} regular but not f ( x ) = g ( x , y ) {\displaystyle f(x)=g(x,y)} or f ( x , y ) = g ( x ) {\displaystyle f(x,y)=g(x)} .

A grammar in which all composition functions are both linear and regular is called a Linear Context-free Rewriting System (LCFRS). LCFRS is a proper subclass of the GCFGs, i.e. it has strictly less computational power than the GCFGs as a whole.

On the other hand, LCFRSs are strictly more expressive than linear-indexed grammars and their weakly equivalent variant tree adjoining grammars (TAGs). Head grammar is another example of an LCFRS that is strictly less powerful than the class of LCFRSs as a whole.

LCFRS are weakly equivalent to (set-local) multicomponent TAGs (MCTAGs) and also with multiple context-free grammar (MCFGs ). and minimalist grammars (MGs). The languages generated by LCFRS (and their weakly equivalents) can be parsed in polynomial time.

See also

References

  1. ^ Weir, David Jeremy (Sep 1988). Characterizing mildly context-sensitive grammar formalisms (PDF) (Ph.D.). Paper. Vol. AAI8908403. University of Pennsylvania Ann Arbor.
  2. Laura Kallmeyer (2010). Parsing Beyond Context-Free Grammars. Springer Science & Business Media. p. 33. ISBN 978-3-642-14846-0.
  3. Laura Kallmeyer (2010). Parsing Beyond Context-Free Grammars. Springer Science & Business Media. p. 35-36. ISBN 978-3-642-14846-0.
  4. Johan F.A.K. van Benthem; Alice ter Meulen (2010). Handbook of Logic and Language (2nd ed.). Elsevier. p. 404. ISBN 978-0-444-53727-0.
Automata theory: formal languages and formal grammars
Chomsky hierarchyGrammarsLanguagesAbstract machines
  • Type-0
  • Type-1
  • Type-2
  • Type-3
Each category of languages, except those marked by a , is a proper subset of the category directly above it. Any language in each category is generated by a grammar and by an automaton in the category in the same line.
Categories: