Misplaced Pages

George S. Hammond

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
American chemist (1921–2005)
George Hammond
Born(1921-05-22)22 May 1921
Auburn, Maine, U.S.
Died5 October 2005(2005-10-05) (aged 84)
Portland, Oregon, U.S.
Alma mater
Known for
Awards
Scientific career
FieldsChemistry
Institutions
Doctoral advisorPaul Doughty Bartlett

George Simms Hammond (May 22, 1921 – October 5, 2005) was an American scientist and theoretical chemist who developed "Hammond's postulate", and fathered organic photochemistry,–the general theory of the geometric structure of the transition state in an organic chemical reaction. Hammond's research is also known for its influence on the philosophy of science. His research garnered him the Norris Award in 1968, the Priestley Medal in 1976, the National Medal of Science in 1994, and the Othmer Gold Medal in 2003. He served as the executive chairman of the Allied Chemical Corporation from 1979 to 1989.

He was a chemist at the California Institute of Technology, and subsequently headed both the Departments of Chemistry and Chemical Engineering at the university. He conducted research at the University of Oxford and University of Basel as a Guggenheim Fellow and National Science Foundation Fellow, respectively. He served as the foreign secretary of the National Academy of Sciences from 1974 to 1978.

A native of Maine, he was born and raised in Auburn; he attended nearby Bates College in Lewiston, Maine, where he graduated magna cum laude with a B.S. in chemistry in 1943. He completed his doctorate at Harvard University in 1947, under the mentorship of Paul Doughty Bartlett, and a postdoctorate at University of California, Los Angeles with Saul Winstein in 1948.

Early life and education

George Simms Hammond was born on May 22, 1921, in Auburn, Maine. Growing up in Auburn his family were charged with the operation of the neighborhood dairy farm on Hardscrabble Road. His father died when Hammond was thirteen. He was the oldest of seven children and was raised by a single mother. From an early age Hammond was charged with running the day-to-day operations of the dairy farm with his mother and older siblings. Hammond's parents were college graduates, but disliked the local schools in Auburn. As a result, he was homeschooled until the sixth grade. Afterwards, he was educated at various Auburn public schools before graduating in 1938. After graduating he took a gap year to continue operating his dairy farm. After his educational hiatus he applied to and was accepted into Bates College, in Lewiston, Maine. He graduated with a Bachelors of Science in chemistry magna cum laude and Phi Beta Kappa in January 1943.

Early career

Upon graduating from college, Hammond took a position as a chemist at Rohm and Haas in Philadelphia, Pennsylvania. After some months on the job he quit to pursue graduate studies at Harvard University, where he received a Masters of Science (M.S.) and Doctor of Philosophy (Ph.D.). His thesis, Inhibition of the Polymerization of Allylacetate, was supervised by Paul Doughty Bartlett. Hammond then moved to Los Angeles, California, to study intermolecular compounds at UCLA.

Career in academia

His academic career began in 1948 with a teaching position at Iowa State College; he served as Assistant Professor of Chemistry. In his capacity there he published his eponymous postulate which is now widely known as the most important publication in the field of organic photochemistry. He moved to the University of Oxford and University of Basel as a Guggenheim Fellow and National Science Foundation Fellow, respectively. In 1958, he moved to the California Institute of Technology as a Professor of Organic Chemistry. Later he was appointed the Arthur Amos Noyes Professor of Chemistry and subsequently went on to lead the Departments of Chemistry and Chemical Engineering. After 14 years teaching and serving as an academic administrator at Caltech he moved in 1972 to the University of California Santa Cruz. At University of California Santa Cruz he served as both a professor and the Chancellor of the natural sciences.

Life outside of academia

Aside from the academic world, during all these years, George Hammond, "made many public speeches on controversial themes, both political (e.g., the invasion of Cambodia, delivered in 1971 at a public rally on Caltech's Olive Walk) and scientific (e.g., the future of chemistry)" Many of these controversial speeches affected his career negatively. For example, after his speech at Olive Walk, president Richard Nixon's administration removed his name from nomination for a major NSF post. Nevertheless, he did not back down and continued to criticize the government, and not limiting to delivering speeches, he wrote a letter to the editor of a newspaper saying: “A June 30 front-page article describes the potential bonanza in arms sales to new members as the North Atlantic Treaty Organization expands. I was favorably inclined toward expansion because of my naive assumption that bringing most of the nations of Europe and North America together as a cooperating group would decrease the likelihood of war. I cannot believe this will be the case if a prerequisite for entry is that countries buy new armaments from present members. At whom will the guns be aimed? Russia? Then we will probably re-create the cold war." The way this excerpt was written says many things about George Hammond, starting with his passionate character. Hammond fought for everything he believed in. He cared about his nation and he was also a little reckless about the consequences he could suffer for defying the government. Also, in the excerpt, a sarcastic side of Hammond can be perceived, a man of strong character with the ability to recognize when he is wrong.

Later pursuits

He was appointed as the Foreign Secretary of the National Academy of Sciences in 1974 and served for one term retiring in 1978. He also gave notable speeches on political issues such as the invasion of Cambodia, and various topics on Chemistry. The talks he gave sometimes had negative impacts on his life, exemplified by Nixon's withdrawal of his name for major National Science Foundation positions. In 1979 he retired from academia and joined the Allied Chemical Corporation as Executive Chairman, serving for ten years. He retired from this capacity and all others after his tenure concluded.

Scientific career

Hammond's postulate

Main article: Hammond's postulate

George Hammond published a hypothesis in physical organic chemistry which describes the geometric structure of the transition state in an organic chemical reaction in his publication, Hammond's principle.

His 1955 publication asserted:

"If two states, as, for example, a transition state and an unstable intermediate, occur consecutively during a reaction process and have nearly the same energy content, their interconversion will involve only a small reorganization of the molecular structures."

Therefore, the geometric structure of a state can be predicted by comparing its energy to the species neighboring it along the reaction coordinate. For example, in an exothermic reaction the transition state is closer in energy to the reactants than to the products. Therefore, the transition state will be more geometrically similar to the reactants than to the products. In contrast, however, in an endothermic reaction the transition state is closer in energy to the products than to the reactants. So, according to Hammond's postulate the structure of the transition state would resemble the products more than the reactants. This type of comparison is especially useful because most transition states cannot be characterized experimentally.

Hammond's postulate also helps to explain and rationalize the Bell–Evans–Polanyi principle. Namely, this principle describes the experimental observation that the rate of a reaction, and therefore its activation energy, is affected by the enthalpy change of that reaction. Hammond's postulate explains this observation by describing how varying the enthalpy of a reaction would also change the structure of the transition state. In turn, this change in geometric structure would alter the energy of the transition state, and therefore the activation energy and reaction rate as well.

The postulate has also been used to predict the shape of reaction coordinate diagrams. For example, electrophilic aromatic substitutions involves a distinct intermediate and two less well defined states. By measuring the effects of aromatic substituents and applying Hammond's postulate it was concluded that the rate-determining step involves formation of a transition state that should resemble the intermediate complex.

During the 1940s and 1950s, chemists had trouble explaining why even slight changes in the reactants caused significant differences in the rate and product distributions of a reaction. In 1955 George S. Hammond, a young professor at Iowa State University, postulated that transition-state theory could be used to qualitatively explain the observed structure-reactivity relationships. Notably, John E. Leffler of Florida State University proposed a similar idea in 1953. However, Hammond's version has received more attention since its qualitative nature was easier to understand and employ than Leffler's complex mathematical equations. Hammond's postulate is sometimes called the Hammond-Leffler postulate to give credit to both scientists.

Interpreting the postulate

Effectively, the postulate states that the structure of a transition state resembles that of the species nearest to it in free energy. This can be explained with reference to potential energy diagrams:

Energy Diagrams showing how to interpret Hammond's Postulate
Energy Diagrams showing how to interpret Hammond's Postulate

In case (a), which is an exothermic reaction, the energy of the transition state is closer in energy to that of the reactant than that of the intermediate or the product. Therefore, from the postulate, the structure of the transition state also more closely resembles that of the reactant. In case (b), the energy of the transition state is close to neither the reactant nor the product, making none of them a good structural model for the transition state. Further information would be needed in order to predict the structure or characteristics of the transition state. Case (c) depicts the potential diagram for an endothermic reaction, in which, according to the postulate, the transition state should more closely resemble that of the intermediate or the product.

Another significance of Hammond's postulate is that it permits us to discuss the structure of the transition state in terms of the reactants, intermediates, or products. In the case where the transition state closely resembles the reactants, the transition state is called “early” while a “late” transition state is the one that closely resembles the intermediate or the product.

An example of the “early” transition state is chlorination. Chlorination favors the products because it is an exothermic reaction, which means that the products are lower in energy than the reactants. When looking at the adjacent diagram (representation of an "early" transition state), one must focus on the transition state, which is not able to be observed during an experiment. To understand what is meant by an “early” transition state, the Hammond postulate represents a curve that shows the kinetics of this reaction. Since the reactants are higher in energy, the transition state appears to be right after the reaction starts.

An example of the “late” transition state is bromination. Bromination favors the reactants because it is an endothermic reaction, which means that the reactants are lower in energy than the products. Since the transition state is hard to observe, the postulate of bromination helps to picture the “late” transition state (see the representation of the "late" transition state). Since the products are higher in energy, the transition state appears to be right before the reaction is complete.

One other useful interpretation of the postulate often found in textbooks of organic chemistry is the following:

Assume that the transition states for reactions involving unstable intermediates can be closely approximated by the intermediates themselves.

This interpretation ignores extremely exothermic and endothermic reactions which are relatively unusual and relates the transition state to the intermediates which are usually the most unstable.

Structure of transition states

SN1 reactions

Energy diagrams of SN1 reactions

Hammond's postulate can be used to examine the structure of the transition states of a SN1 reaction. In particular, the dissociation of the leaving group is the first transition state in a SN1 reaction. The stabilities of the carbocations formed by this dissociation are known to follow the trend tertiary > secondary > primary > methyl.

Therefore, since the tertiary carbocation is relatively stable and therefore close in energy to the R-X reactant, then the tertiary transition state will have a structure that is fairly similar to the R-X reactant. In terms of the graph of reaction coordinate versus energy, this is shown by the fact that the tertiary transition state is further to the left than the other transition states. In contrast, the energy of a methyl carbocation is very high, and therefore the structure of the transition state is more similar to the intermediate carbocation than to the R-X reactant. Accordingly, the methyl transition state is very far to the right.

SN2 reactions

Substitution, nucleophilic bimolecular reactions are concerted reactions where both the nucleophile and substrate are involved in the rate limiting step. Since this reaction is concerted, the reaction occurs in one step, where the bonds are broken, while new bonds are formed. Therefore, to interpret this reaction, it is important to look at the transition state, which resembles the concerted rate limiting step. In the "Depiction of SN2 Reaction" figure, the nucleophile forms a new bond to the carbon, while the halide (L) bond is broken.

E1 reactions

Unimolecular Elimination Reaction Mechanism

An E1 reaction consists of a unimolecular elimination, where the rate determining step of the mechanism depends on the removal of a single molecular species. This is a two-step mechanism. The more stable the carbocation intermediate is, the faster the reaction will proceed, favoring the products. Stabilization of the carbocation intermediate lowers the activation energy. The reactivity order is (CH3)3C- > (CH3)2CH- > CH3CH2- > CH3-.

Unimolecular Elimination Reaction Coordinate

Furthermore, studies describe a typical kinetic resolution process that starts out with two enantiomers that are energetically equivalent and, in the end, forms two energy-inequivalent intermediates, referred to as diastereomers. According to Hammond's postulate, the more stable diastereomer is formed faster.

E2 reactions

Elimination, bimolecular reactions are one step, concerted reaction where both base and substrate participate in the rate limiting step. In an E2 mechanism, a base takes a proton near the leaving group, forcing the electrons down to make a double bond, and forcing off the leaving group-all in one concerted step. The rate law depends on the first order concentration of two reactants, making it a 2nd order (bimolecular) elimination reaction. Factors that affect the rate determining step are stereochemistry, leaving groups, and base strength.

A theory, for an E2 reaction, by Joseph Bunnett suggests the lowest pass through the energy barrier between reactants and products is gained by an adjustment between the degrees of Cβ-H and Cα-X rupture at the transition state. The adjustment involves much breaking of the bond more easily broken, and a small amount of breaking of the bond which requires more energy. This conclusion by Bunnett is a contradiction from the Hammond postulate. The Hammond postulate is the opposite of what Bunnett theorized. In the transition state of a bond breaking step it involves little breaking when the bond is easily broken and much breaking when it is difficult to break. Despite these differences, the two postulates are not in conflict since they are concerned with different sorts of processes. Hammond focuses on reaction steps where one bond is made or broken, or the breaking of two or more bonds occur simultaneously. The E2 theory transition state concerns a process when bond formation or breaking are not simultaneous.

Kinetics and the Bell-Evans-Polanyi principle

Technically, Hammond's postulate only describes the geometric structure of a chemical reaction. However, Hammond's postulate indirectly gives information about the rate, kinetics, and activation energy of reactions. Hence, it gives a theoretical basis for the understanding the Bell-Evans-Polanyi principle, which describes the experimental observation that the enthalpy change and rate of similar reactions were usually correlated.

Energy diagrams of SN1 reactions

The relationship between Hammond's postulate and the BEP principle can be understood by considering a SN1 reaction. Although two transition states occur during a SN1 reaction (dissociation of the leaving group and then attack by the nucleophile), the dissociation of the leaving group is almost always the rate-determining step. Hence, the activation energy and therefore rate of the reaction will depend only upon the dissociation step.

First, consider the reaction at secondary and tertiary carbons. As the BEP principle notes, experimentally SN1 reactions at tertiary carbons are faster than at secondary carbons. Therefore, by definition, the transition state for tertiary reactions will be at a lower energy than for secondary reactions. However, the BEP principle cannot justify why the energy is lower.

Using Hammond's postulate, the lower energy of the tertiary transition state means that its structure is relatively closer to its reactants R(tertiary)-X than to the carbocation "product" when compared to the secondary case. Thus, the tertiary transition state will be more geometrically similar to the R(tertiary)-X reactants than the secondary transition state is to its R(secondary)-X reactants. Hence, if the tertiary transition state is close in structure to the (low energy) reactants, then it will also be lower in energy because structure determines energy. Likewise, if the secondary transition state is more similar to the (high energy) carbocation "product," then it will be higher in energy.

Applying the postulate

Hammond's postulate is useful for understanding the relationship between the rate of a reaction and the stability of the products. While the rate of a reaction depends just on the activation energy (often represented in organic chemistry as ΔG “delta G double dagger”), the final ratios of products in chemical equilibrium depends only on the standard free-energy change ΔG (“delta G”). The ratio of the final products at equilibrium corresponds directly with the stability of those products.

Hammond's postulate connects the rate of a reaction process with the structural features of those states that form part of it, by saying that the molecular reorganizations have to be small in those steps that involve two states that are very close in energy. This gave birth to the structural comparison between the starting materials, products, and the possible "stable intermediates" that led to the understanding that the most stable product is not always the one that is favored in a reaction process.

Critical acclaim and question

Hammond's postulate is especially important when looking at the rate-limiting step of a reaction. However, one must be cautious when examining a multistep reaction or one with the possibility of rearrangements during an intermediate stage. In some cases, the final products appear in skewed ratios in favor of a more unstable product (called the kinetic product) rather than the more stable product (the thermodynamic product). In this case one must examine the rate-limiting step and the intermediates. Often, the rate-limiting step is the initial formation of an unstable species such as a carbocation. Then, once the carbocation is formed, subsequent rearrangements can occur. In these kinds of reactions, especially when run at lower temperatures, the reactants simply react before the rearrangements necessary to form a more stable intermediate have time to occur. At higher temperatures when microscopic reversal is easier, the more stable thermodynamic product is favored because these intermediates have time to rearrange. Whether run at high or low temperatures, the mixture of the kinetic and thermodynamic products eventually reach the same ratio, one in favor of the more stable thermodynamic product, when given time to equilibrate due to microreversal.

Personal

Hammond married Marian Reese in 1945, and had five children with her. The couple divorced in 1975, and he was remarried soon after to Eve Menger. He had two children with Eve.

Awards and honors

See also

References

  1. ^ Wamser, Carl C. (2003-05-01). "Biography of George S. Hammond". The Journal of Physical Chemistry A. 107 (18): 3149–3150. Bibcode:2003JPCA..107.3149W. doi:10.1021/jp030184e. ISSN 1089-5639.
  2. ^ Yarnell, Amanda (2003). "Hammond Postulate: 1955 paper used transition-state theory to explain structure-reactivity relationships". Chemical & Engineering News. 81 (20): 42. doi:10.1021/cen-v081n020.p042.
  3. ^ Leffler, J. E. (1953). "Parameters for the Description of Transition States". Science. 117 (3039): 340–341. Bibcode:1953Sci...117..340L. doi:10.1126/science.117.3039.340. PMID 17741025.
  4. Fox and Whiteshell, Marye Anne and James K. (2004). Organic Chemistry. Sudbury, Massachusetts: Jones and Bartlett Publishers. pp. 355–357. ISBN 978-0-7637-2197-8.
  5. "Obituaries", C&EN, 83(48), 46 (November 28, 2005).
  6. "Chemical Heritage Foundation names John Baldeschwieler and George Hammond 2003 Othmer Gold Medalists". Eureka Alert. 1 April 2003. Retrieved 12 June 2014.
  7. "Othmer Gold Medal". Science History Institute. 2016-05-31. Retrieved 22 March 2018.
  8. ^ Wamser, Carl C. (May 2003). "Biography of George S. Hammond". The Journal of Physical Chemistry A. 107 (18): 3149–3150. Bibcode:2003JPCA..107.3149W. doi:10.1021/jp030184e. ISSN 1089-5639.
  9. Weiss, Richard G.; Wamser, Carl C. (2006). "Introduction to the Special Issue in honour of George Simms Hammond". Photochemical & Photobiological Sciences. 5 (10): 869–870. doi:10.1039/b612175f.
  10. Measure, Lexile (July 7, 1997). "Cold and Colder War". The New York Times. Retrieved November 19, 2018.
  11. Hammond, G. S. (1955). "A Correlation of Reaction Rates". J. Am. Chem. Soc. 77 (2): 334–338. doi:10.1021/ja01607a027. Solomons, T.W. Graham & Fryhle, Craig B. (2004). Organic Chemistry (8th ed.). John Wiley & Sons, Inc. ISBN 0-471-41799-8.
    Loudon, G. Marc. "Organic Chemistry" 4th ed. 2005.
  12. Carey, Francis A.; Sundberg, Richard (2007). Advanced Organic Chemistry Part A:Structure and Mechanisms. Norwell: Springer.
  13. Anslyn, Eric V.; Dougherty, Dennis A. (2006). Modern Physical Organic Chemistry. Sausalito, CA: University Science.
  14. McMurry, John (1992). Organic Chemistry. Pacific Grove, CA: Brooks/Cole. pp. 246–248.
  15. Carey, F.A.; Sundberg, R.J. (1990). Advanced Organic Chemistry.-Part A: Structure and Mechanism. New York, NY: Plenum.
  16. Meany, J.E. (1 February 2001). "Application of Hammond's postulate". Journal of Chemical Education. 01. 2 (78): 204. Bibcode:2001JChEd..78..204M. doi:10.1021/ed078p204.
  17. Fox, Marye Anne; Whitesell, James K. (2004). Organic Chemistry Third Edition. Sudbury, MA: Jones and Barlett Publishers. p. 356.
  18. Sorrell, Thomas N. (2005). Organic Chemistry Third Edition. Sausalito, CA: University Science Books. pp. 370–371.
  19. Anslyn, Eric V.; Brown, William H.; Foote, Christopher S.; Iverson, Brent L. (2009). Organic Chemistry Fifth Edition. Belmont, CA: Brooks/Cole Cengage Learning. p. 333.
  20. Curtis, Rachael (October 2, 2013). "Kinetics of Nucleophilic Substitution Reactions". Chemwiki. UCDavis. Retrieved November 21, 2015.
  21. Justik, Michael W. "Review of SN1, SN2, E1, and E2" (PDF). Archived from the original (PDF) on 2015-12-08. Retrieved 2016-06-04.
  22. Rajendran, Kamalraj V.; Nikitin, Kirill V.; Gilheany, Declan G. (2015-07-17). "Hammond Postulate Mirroring Enables Enantiomeric Enrichment of Phosphorus Compounds via Two Thermodynamically Interconnected Sequential Stereoselective Processes". Journal of the American Chemical Society. 137 (29): 9375–9381. doi:10.1021/jacs.5b04415. PMID 26186272.
  23. ^ Bunnett, Joseph (1962). Survey of Progress in Chemistry. New York: Academic. pp. 70–72.
  24. "Golden Plate Awardees of the American Academy of Achievement". www.achievement.org. American Academy of Achievement.

Further reading

External links

United States National Medal of Science laureates
Behavioral and social science
1960s
1964
Neal Elgar Miller
1980s
1986
Herbert A. Simon
1987
Anne Anastasi
George J. Stigler
1988
Milton Friedman
1990s
1990
Leonid Hurwicz
Patrick Suppes
1991
George A. Miller
1992
Eleanor J. Gibson
1994
Robert K. Merton
1995
Roger N. Shepard
1996
Paul Samuelson
1997
William K. Estes
1998
William Julius Wilson
1999
Robert M. Solow
2000s
2000
Gary Becker
2003
R. Duncan Luce
2004
Kenneth Arrow
2005
Gordon H. Bower
2008
Michael I. Posner
2009
Mortimer Mishkin
2010s
2011
Anne Treisman
2014
Robert Axelrod
2015
Albert Bandura
2020s
2023
Huda Akil
Shelley E. Taylor
2025
Larry Bartels
Biological sciences
1960s
1963
C. B. van Niel
1964
Theodosius Dobzhansky
Marshall W. Nirenberg
1965
Francis P. Rous
George G. Simpson
Donald D. Van Slyke
1966
Edward F. Knipling
Fritz Albert Lipmann
William C. Rose
Sewall Wright
1967
Kenneth S. Cole
Harry F. Harlow
Michael Heidelberger
Alfred H. Sturtevant
1968
Horace Barker
Bernard B. Brodie
Detlev W. Bronk
Jay Lush
Burrhus Frederic Skinner
1969
Robert Huebner
Ernst Mayr
1970s
1970
Barbara McClintock
Albert B. Sabin
1973
Daniel I. Arnon
Earl W. Sutherland Jr.
1974
Britton Chance
Erwin Chargaff
James V. Neel
James Augustine Shannon
1975
Hallowell Davis
Paul Gyorgy
Sterling B. Hendricks
Orville Alvin Vogel
1976
Roger Guillemin
Keith Roberts Porter
Efraim Racker
E. O. Wilson
1979
Robert H. Burris
Elizabeth C. Crosby
Arthur Kornberg
Severo Ochoa
Earl Reece Stadtman
George Ledyard Stebbins
Paul Alfred Weiss
1980s
1981
Philip Handler
1982
Seymour Benzer
Glenn W. Burton
Mildred Cohn
1983
Howard L. Bachrach
Paul Berg
Wendell L. Roelofs
Berta Scharrer
1986
Stanley Cohen
Donald A. Henderson
Vernon B. Mountcastle
George Emil Palade
Joan A. Steitz
1987
Michael E. DeBakey
Theodor O. Diener
Harry Eagle
Har Gobind Khorana
Rita Levi-Montalcini
1988
Michael S. Brown
Stanley Norman Cohen
Joseph L. Goldstein
Maurice R. Hilleman
Eric R. Kandel
Rosalyn Sussman Yalow
1989
Katherine Esau
Viktor Hamburger
Philip Leder
Joshua Lederberg
Roger W. Sperry
Harland G. Wood
1990s
1990
Baruj Benacerraf
Herbert W. Boyer
Daniel E. Koshland Jr.
Edward B. Lewis
David G. Nathan
E. Donnall Thomas
1991
Mary Ellen Avery
G. Evelyn Hutchinson
Elvin A. Kabat
Robert W. Kates
Salvador Luria
Paul A. Marks
Folke K. Skoog
Paul C. Zamecnik
1992
Maxine Singer
Howard Martin Temin
1993
Daniel Nathans
Salome G. Waelsch
1994
Thomas Eisner
Elizabeth F. Neufeld
1995
Alexander Rich
1996
Ruth Patrick
1997
James Watson
Robert A. Weinberg
1998
Bruce Ames
Janet Rowley
1999
David Baltimore
Jared Diamond
Lynn Margulis
2000s
2000
Nancy C. Andreasen
Peter H. Raven
Carl Woese
2001
Francisco J. Ayala
George F. Bass
Mario R. Capecchi
Ann Graybiel
Gene E. Likens
Victor A. McKusick
Harold Varmus
2002
James E. Darnell
Evelyn M. Witkin
2003
J. Michael Bishop
Solomon H. Snyder
Charles Yanofsky
2004
Norman E. Borlaug
Phillip A. Sharp
Thomas E. Starzl
2005
Anthony Fauci
Torsten N. Wiesel
2006
Rita R. Colwell
Nina Fedoroff
Lubert Stryer
2007
Robert J. Lefkowitz
Bert W. O'Malley
2008
Francis S. Collins
Elaine Fuchs
J. Craig Venter
2009
Susan L. Lindquist
Stanley B. Prusiner
2010s
2010
Ralph L. Brinster
Rudolf Jaenisch
2011
Lucy Shapiro
Leroy Hood
Sallie Chisholm
2012
May Berenbaum
Bruce Alberts
2013
Rakesh K. Jain
2014
Stanley Falkow
Mary-Claire King
Simon Levin
2020s
2023
Gebisa Ejeta
Eve Marder
Gregory Petsko
Sheldon Weinbaum
2025
Bonnie Bassler
Angela Belcher
Helen Blau
Emery N. Brown
G. David Tilman
Teresa Woodruff
Chemistry
1960s
1964
Roger Adams
1980s
1982
F. Albert Cotton
Gilbert Stork
1983
Roald Hoffmann
George C. Pimentel
Richard N. Zare
1986
Harry B. Gray
Yuan Tseh Lee
Carl S. Marvel
Frank H. Westheimer
1987
William S. Johnson
Walter H. Stockmayer
Max Tishler
1988
William O. Baker
Konrad E. Bloch
Elias J. Corey
1989
Richard B. Bernstein
Melvin Calvin
Rudolph A. Marcus
Harden M. McConnell
1990s
1990
Elkan Blout
Karl Folkers
John D. Roberts
1991
Ronald Breslow
Gertrude B. Elion
Dudley R. Herschbach
Glenn T. Seaborg
1992
Howard E. Simmons Jr.
1993
Donald J. Cram
Norman Hackerman
1994
George S. Hammond
1995
Thomas Cech
Isabella L. Karle
1996
Norman Davidson
1997
Darleane C. Hoffman
Harold S. Johnston
1998
John W. Cahn
George M. Whitesides
1999
Stuart A. Rice
John Ross
Susan Solomon
2000s
2000
John D. Baldeschwieler
Ralph F. Hirschmann
2001
Ernest R. Davidson
Gábor A. Somorjai
2002
John I. Brauman
2004
Stephen J. Lippard
2005
Tobin J. Marks
2006
Marvin H. Caruthers
Peter B. Dervan
2007
Mostafa A. El-Sayed
2008
Joanna Fowler
JoAnne Stubbe
2009
Stephen J. Benkovic
Marye Anne Fox
2010s
2010
Jacqueline K. Barton
Peter J. Stang
2011
Allen J. Bard
M. Frederick Hawthorne
2012
Judith P. Klinman
Jerrold Meinwald
2013
Geraldine L. Richmond
2014
A. Paul Alivisatos
2025
R. Lawrence Edwards
Engineering sciences
1960s
1962
Theodore von Kármán
1963
Vannevar Bush
John Robinson Pierce
1964
Charles S. Draper
Othmar H. Ammann
1965
Hugh L. Dryden
Clarence L. Johnson
Warren K. Lewis
1966
Claude E. Shannon
1967
Edwin H. Land
Igor I. Sikorsky
1968
J. Presper Eckert
Nathan M. Newmark
1969
Jack St. Clair Kilby
1970s
1970
George E. Mueller
1973
Harold E. Edgerton
Richard T. Whitcomb
1974
Rudolf Kompfner
Ralph Brazelton Peck
Abel Wolman
1975
Manson Benedict
William Hayward Pickering
Frederick E. Terman
Wernher von Braun
1976
Morris Cohen
Peter C. Goldmark
Erwin Wilhelm Müller
1979
Emmett N. Leith
Raymond D. Mindlin
Robert N. Noyce
Earl R. Parker
Simon Ramo
1980s
1982
Edward H. Heinemann
Donald L. Katz
1983
Bill Hewlett
George Low
John G. Trump
1986
Hans Wolfgang Liepmann
Tung-Yen Lin
Bernard M. Oliver
1987
Robert Byron Bird
H. Bolton Seed
Ernst Weber
1988
Daniel C. Drucker
Willis M. Hawkins
George W. Housner
1989
Harry George Drickamer
Herbert E. Grier
1990s
1990
Mildred Dresselhaus
Nick Holonyak Jr.
1991
George H. Heilmeier
Luna B. Leopold
H. Guyford Stever
1992
Calvin F. Quate
John Roy Whinnery
1993
Alfred Y. Cho
1994
Ray W. Clough
1995
Hermann A. Haus
1996
James L. Flanagan
C. Kumar N. Patel
1998
Eli Ruckenstein
1999
Kenneth N. Stevens
2000s
2000
Yuan-Cheng B. Fung
2001
Andreas Acrivos
2002
Leo Beranek
2003
John M. Prausnitz
2004
Edwin N. Lightfoot
2005
Jan D. Achenbach
2006
Robert S. Langer
2007
David J. Wineland
2008
Rudolf E. Kálmán
2009
Amnon Yariv
2010s
2010
Shu Chien
2011
John B. Goodenough
2012
Thomas Kailath
2020s
2023
Subra Suresh
2025
John Dabiri
Mathematical, statistical, and computer sciences
1960s
1963
Norbert Wiener
1964
Solomon Lefschetz
H. Marston Morse
1965
Oscar Zariski
1966
John Milnor
1967
Paul Cohen
1968
Jerzy Neyman
1969
William Feller
1970s
1970
Richard Brauer
1973
John Tukey
1974
Kurt Gödel
1975
John W. Backus
Shiing-Shen Chern
George Dantzig
1976
Kurt Otto Friedrichs
Hassler Whitney
1979
Joseph L. Doob
Donald E. Knuth
1980s
1982
Marshall H. Stone
1983
Herman Goldstine
Isadore Singer
1986
Peter Lax
Antoni Zygmund
1987
Raoul Bott
Michael Freedman
1988
Ralph E. Gomory
Joseph B. Keller
1989
Samuel Karlin
Saunders Mac Lane
Donald C. Spencer
1990s
1990
George F. Carrier
Stephen Cole Kleene
John McCarthy
1991
Alberto Calderón
1992
Allen Newell
1993
Martin David Kruskal
1994
John Cocke
1995
Louis Nirenberg
1996
Richard Karp
Stephen Smale
1997
Shing-Tung Yau
1998
Cathleen Synge Morawetz
1999
Felix Browder
Ronald R. Coifman
2000s
2000
John Griggs Thompson
Karen Uhlenbeck
2001
Calyampudi R. Rao
Elias M. Stein
2002
James G. Glimm
2003
Carl R. de Boor
2004
Dennis P. Sullivan
2005
Bradley Efron
2006
Hyman Bass
2007
Leonard Kleinrock
Andrew J. Viterbi
2009
David B. Mumford
2010s
2010
Richard A. Tapia
S. R. Srinivasa Varadhan
2011
Solomon W. Golomb
Barry Mazur
2012
Alexandre Chorin
David Blackwell
2013
Michael Artin
2020s
2025
Ingrid Daubechies
Cynthia Dwork
Physical sciences
1960s
1963
Luis W. Alvarez
1964
Julian Schwinger
Harold Urey
Robert Burns Woodward
1965
John Bardeen
Peter Debye
Leon M. Lederman
William Rubey
1966
Jacob Bjerknes
Subrahmanyan Chandrasekhar
Henry Eyring
John H. Van Vleck
Vladimir K. Zworykin
1967
Jesse Beams
Francis Birch
Gregory Breit
Louis Hammett
George Kistiakowsky
1968
Paul Bartlett
Herbert Friedman
Lars Onsager
Eugene Wigner
1969
Herbert C. Brown
Wolfgang Panofsky
1970s
1970
Robert H. Dicke
Allan R. Sandage
John C. Slater
John A. Wheeler
Saul Winstein
1973
Carl Djerassi
Maurice Ewing
Arie Jan Haagen-Smit
Vladimir Haensel
Frederick Seitz
Robert Rathbun Wilson
1974
Nicolaas Bloembergen
Paul Flory
William Alfred Fowler
Linus Carl Pauling
Kenneth Sanborn Pitzer
1975
Hans A. Bethe
Joseph O. Hirschfelder
Lewis Sarett
Edgar Bright Wilson
Chien-Shiung Wu
1976
Samuel Goudsmit
Herbert S. Gutowsky
Frederick Rossini
Verner Suomi
Henry Taube
George Uhlenbeck
1979
Richard P. Feynman
Herman Mark
Edward M. Purcell
John Sinfelt
Lyman Spitzer
Victor F. Weisskopf
1980s
1982
Philip W. Anderson
Yoichiro Nambu
Edward Teller
Charles H. Townes
1983
E. Margaret Burbidge
Maurice Goldhaber
Helmut Landsberg
Walter Munk
Frederick Reines
Bruno B. Rossi
J. Robert Schrieffer
1986
Solomon J. Buchsbaum
H. Richard Crane
Herman Feshbach
Robert Hofstadter
Chen-Ning Yang
1987
Philip Abelson
Walter Elsasser
Paul C. Lauterbur
George Pake
James A. Van Allen
1988
D. Allan Bromley
Paul Ching-Wu Chu
Walter Kohn
Norman Foster Ramsey Jr.
Jack Steinberger
1989
Arnold O. Beckman
Eugene Parker
Robert Sharp
Henry Stommel
1990s
1990
Allan M. Cormack
Edwin M. McMillan
Robert Pound
Roger Revelle
1991
Arthur L. Schawlow
Ed Stone
Steven Weinberg
1992
Eugene M. Shoemaker
1993
Val Fitch
Vera Rubin
1994
Albert Overhauser
Frank Press
1995
Hans Dehmelt
Peter Goldreich
1996
Wallace S. Broecker
1997
Marshall Rosenbluth
Martin Schwarzschild
George Wetherill
1998
Don L. Anderson
John N. Bahcall
1999
James Cronin
Leo Kadanoff
2000s
2000
Willis E. Lamb
Jeremiah P. Ostriker
Gilbert F. White
2001
Marvin L. Cohen
Raymond Davis Jr.
Charles Keeling
2002
Richard Garwin
W. Jason Morgan
Edward Witten
2003
G. Brent Dalrymple
Riccardo Giacconi
2004
Robert N. Clayton
2005
Ralph A. Alpher
Lonnie Thompson
2006
Daniel Kleppner
2007
Fay Ajzenberg-Selove
Charles P. Slichter
2008
Berni Alder
James E. Gunn
2009
Yakir Aharonov
Esther M. Conwell
Warren M. Washington
2010s
2011
Sidney Drell
Sandra Faber
Sylvester James Gates
2012
Burton Richter
Sean C. Solomon
2014
Shirley Ann Jackson
2020s
2023
Barry Barish
Myriam Sarachik
2025
Richard Alley
Wendy Freedman
Keivan Stassun
Categories: