Misplaced Pages

Glomerular hyperfiltration

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Medical condition
Glomerular hyperfiltration
Diagram showing a schematic nephron and its blood supply.

Glomerular hyperfiltration is a situation where the filtration elements in the kidneys called glomeruli produce excessive amounts of pro-urine. It can be part of a number of medical conditions particularly diabetic nephropathy (kidney damage associated with diabetes).

There is no universally accepted definition of glomerular hyperfiltration, and little research has been done on the pathophysiological mechanisms, which are likely to change depending on the underlying ailment.

Glomerular hyperfiltration can result from efferent arteriolar vasoconstriction due to activation of the renin-angiotensin-aldosterone system, which causes glomerular hypertension, or afferent arteriolar vasodilation, as observed in diabetic patients or following a high-protein meal.

Causes

In healthy individuals, high protein loading causes glomerular hyperfiltration, or an absolute increase in glomerular filtration rate (GFR).

Risk factors

Most young Type 1 diabetic patients experience glomerular hyperfiltration, a typical functional deviation in insulin-dependent diabetes mellitus. A meta-analysis of research done on Type 1 diabetic subjects found that people with glomerular hyperfiltration have a higher chance of developing albuminuria and seeing their diabetic nephropathy worsen. Poor glycaemic control has been blamed for this finding because hyperfiltration and HbA1c were found to be correlated.

According to certain research, glomerular hyperfiltration happens in cases of hypertension as well. Humans with early-stage hypertension have demonstrated glomerular hyperfiltration during sympathetic nervous system activation.

Mechanism

Activation of the renin-angiotensin-aldosterone system may be the mechanism underlying renal injury linked to glomerular hyperfiltration. This can result in endothelial dysfunction, increased arterial stiffness, and maladaptive renal and systemic hemodynamic responses.

Diagnosis

The lack of an established definition for this clinical entity is one of the primary issues with the diagnosis of hyperfiltration. The primary cause of the lack of clarity surrounding the GFR levels that indicate hyperfiltration is their strong reliance on age. Glomerular hyperfiltration has traditionally been characterized as an elevated whole-kidney GFR, or a GFR greater than two standard deviations above the mean GFR of healthy individuals.

Treatment

In diabetic mice, proinsulin C-peptide, a putative renoprotective agent, narrows glomerular afferent arterioles. Therefore, proinsulin C-peptide administration should theoretically prevent glomerular hyperfiltration.

An insulin-sensitizing medication called rosiglitazone is known to treat endothelial dysfunction. It has been demonstrated that this medication reduces renal end-organ damage in patients with type 2 diabetes and microalbuminuria, improves nitric oxide bioavailability, and ameliorates glomerular hyperfiltration in patients with early type 2 diabetes.

In experimental diabetes, renal nerves may play a significant role in mediating glomerular hyperfiltration. In this sense, in diabetic rats, chronic renal denervation also inhibits glomerular hyperfiltration.

See also

References

  1. Cachat, F; Combescure, C; Cauderay, M; Girardin, E; Chehade, H (7 January 2015). "A Systematic Review of Glomerular Hyperfiltration Assessment and Definition in the Medical Literature". Clinical Journal of the American Society of Nephrology. 10 (3): 382–9. doi:10.2215/CJN.03080314. PMC 4348676. PMID 25568216.
  2. ^ Helal, Imed; Fick-Brosnahan, Godela M.; Reed-Gitomer, Berenice; Schrier, Robert W. (February 21, 2012). "Glomerular hyperfiltration: definitions, mechanisms and clinical implications". Nature Reviews Nephrology. 8 (5). Springer Science and Business Media LLC: 293–300. doi:10.1038/nrneph.2012.19. ISSN 1759-5061. PMID 22349487. S2CID 5678191.
  3. BERGSTRÖM, JONAS; AHLBERG, MARIANNE; ALVESTRAND, ANDERS (January 12, 1985). "Influence of Protein Intake on Renal Hemodynamics and Plasma Hormone Concentrations in Normal Subjects". Acta Medica Scandinavica. 217 (2). Wiley: 189–196. doi:10.1111/j.0954-6820.1985.tb01655.x. ISSN 0001-6101. PMID 3887848.
  4. Amin, Rakesh; Turner, Charles; van Aken, Sara; Konopelska Bahu, Teresa; Watts, Angela; Lindsell, David R.M.; Neil Dalton, R.; Dunger, David B. (2005). "The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: The Oxford Regional Prospective Study". Kidney International. 68 (4). Elsevier BV: 1740–1749. doi:10.1111/j.1523-1755.2005.00590.x. ISSN 0085-2538. PMID 16164650.
  5. Magee, G. M.; Bilous, R. W.; Cardwell, C. R.; Hunter, S. J.; Kee, F.; Fogarty, D. G. (February 7, 2009). "Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis". Diabetologia. 52 (4). Springer Science and Business Media LLC: 691–697. doi:10.1007/s00125-009-1268-0. ISSN 0012-186X. PMID 19198800.
  6. DAHLQUIST, G.; APERIA, A.; BROBERGER, O.; PERSSON, B.; WILTON, P. (1983). "Renal Function in Relation to Metabolic Control in Children with Diabetes of Different Duration". Acta Paediatrica. 72 (6). Wiley: 903–909. doi:10.1111/j.1651-2227.1983.tb09838.x. ISSN 0803-5253. PMID 6369870. S2CID 37840032.
  7. QUASCHNING, THOMAS; D'USCIO, LIVIUS V.; SHAW, SIDNEY; GRÖNE, HERMANN-JOSEF; RUSCHITZKA, FRANK; LÜSCHER, THOMAS F. (2001). "Vasopeptidase Inhibition Restores Renovascular Endothelial Dysfunction in Salt-Induced Hypertension". Journal of the American Society of Nephrology. 12 (11). Ovid Technologies (Wolters Kluwer Health): 2280–2287. doi:10.1681/asn.v12112280. ISSN 1046-6673. PMID 11675404.
  8. Schmieder, R E; Veelken, R; Schobel, H; Dominiak, P; Mann, J F; Luft, F C (1997). "Glomerular hyperfiltration during sympathetic nervous system activation in early essential hypertension". Journal of the American Society of Nephrology. 8 (6). Ovid Technologies (Wolters Kluwer Health): 893–900. doi:10.1681/asn.v86893. ISSN 1046-6673. PMID 9189855.
  9. Cherney, David Z.I.; Lai, Vesta; Scholey, James W.; Miller, Judith A.; Zinman, Bernard; Reich, Heather N. (November 4, 2009). "Effect of Direct Renin Inhibition on Renal Hemodynamic Function, Arterial Stiffness, and Endothelial Function in Humans With Uncomplicated Type 1 Diabetes". Diabetes Care. 33 (2). American Diabetes Association: 361–365. doi:10.2337/dc09-1303. ISSN 0149-5992. PMC 2809283. PMID 19889802.
  10. van der Meer, Irene M; Cravedi, Paolo; Remuzzi, Giuseppe (May 4, 2010). "The role of renin angiotensin system inhibition in kidney repair". Fibrogenesis & Tissue Repair. 3 (1). Springer Science and Business Media LLC: 7. doi:10.1186/1755-1536-3-7. ISSN 1755-1536. PMC 2888753. PMID 20441574.
  11. Palatini, P. (March 19, 2012). "Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension". Nephrology Dialysis Transplantation. 27 (5). Oxford University Press (OUP): 1708–1714. doi:10.1093/ndt/gfs037. ISSN 0931-0509. PMID 22431709.
  12. Premaratne, E.; MacIsaac, R. J.; Tsalamandris, C.; Panagiotopoulos, S.; Smith, T.; Jerums, G. (November 1, 2005). "Renal hyperfiltration in type 2 diabetes: effect of age-related decline in glomerular filtration rate". Diabetologia. 48 (12). Springer Science and Business Media LLC: 2486–2493. doi:10.1007/s00125-005-0002-9. ISSN 0012-186X. PMID 16261309.
  13. Nordquist, Lina; Lai, En Yin; Sjöquist, Mats; Patzak, Andreas; Persson, A. Erik G. (2008). "Proinsulin C-peptide constricts glomerular afferent arterioles in diabetic mice. A potential renoprotective mechanism". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 294 (3). American Physiological Society: R836 – R841. doi:10.1152/ajpregu.00811.2007. ISSN 0363-6119. PMID 18077505.
  14. Pistrosch, Frank; Herbrig, Kay; Kindel, Beate; Passauer, Jens; Fischer, Sabine; Gross, Peter (July 1, 2005). "Rosiglitazone Improves Glomerular Hyperfiltration, Renal Endothelial Dysfunction, and Microalbuminuria of Incipient Diabetic Nephropathy in Patients". Diabetes. 54 (7). American Diabetes Association: 2206–2211. doi:10.2337/diabetes.54.7.2206. ISSN 0012-1797. PMID 15983223.
  15. Luippold, G. (February 1, 2004). "Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats". Nephrology Dialysis Transplantation. 19 (2). Oxford University Press (OUP): 342–347. doi:10.1093/ndt/gfg584. ISSN 1460-2385. PMID 14736957.

Further reading

External links

ClassificationD
Disease of the kidney glomerules
Primarily
nephrotic
Non-proliferative
Proliferative
By condition
Primarily
nephritic,
RPG
Type I RPG/Type II hypersensitivity
Type II RPG/Type III hypersensitivity
Type III RPG/Pauci-immune
General
Categories: