Misplaced Pages

Glycineamide ribonucleotide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Glycinamide ribonucleotide)
Glycineamide ribonucleotide
Names
IUPAC name (1R)-1,4-Anhydro-1-glycinamido-D-ribitol 5-(dihydrogen phosphate)
Systematic IUPAC name methyl dihydrogen phosphate
Other names Glycineamide ribotide,
GAR
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C7H15N2O8P/c8-1-4(10)9-7-6(12)5(11)3(17-7)2-16-18(13,14)15/h3,5-7,11-12H,1-2,8H2,(H,9,10)(H2,13,14,15)/t3-,5-,6-,7-/m1/s1Key: OBQMLSFOUZUIOB-SHUUEZRQSA-N
SMILES
  • C(1(((O1)NC(=O)CN)O)O)OP(=O)(O)O
Properties
Chemical formula C7H15N2O8P
Molar mass 286.177 g·mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Glycineamide ribonucleotide (or GAR) is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA. The vitamins thiamine and cobalamin also contain fragments derived from GAR.

Phosphoribosylamine (PRA)

GAR is the product of the enzyme phosphoribosylamine—glycine ligase acting on phosphoribosylamine (PRA) to combine it with glycine in a process driven by ATP. The reaction, EC 6.3.4.13 forms an amide bond:

PRA + glycine + ATP → GAR + ADP + Pi

The biosynthesis pathway next adds a formyl group from 10-formyltetrahydrofolate to GAR, catalysed by phosphoribosylglycinamide formyltransferase in reaction EC 2.1.2.2 and producing formylglycinamide ribotide (FGAR):

GAR + 10-formyltetrahydrofolate → FGAR + tetrahydrofolate

See also

References

  1. R. Caspi (2009-01-13). "Pathway: 5-aminoimidazole ribonucleotide biosynthesis I". MetaCyc Metabolic Pathway Database. Retrieved 2022-02-02.
  2. Zhang, Y.; Morar, M.; Ealick, S.E. (2008). "Structural biology of the purine biosynthetic pathway". Cellular and Molecular Life Sciences. 65: 3699–3724. doi:10.1007/s00018-008-8295-8. PMC 2596281. PMID 18712276.
  3. Gupta, Rani; Gupta, Namita (2021). "Nucleotide Biosynthesis and Regulation". Fundamentals of Bacterial Physiology and Metabolism. pp. 525–554. doi:10.1007/978-981-16-0723-3_19. ISBN 978-981-16-0722-6. S2CID 234897784.
  4. Chatterjee, Abhishek; Hazra, Amrita B.; Abdelwahed, Sameh; Hilmey, David G.; Begley, Tadhg P. (2010). "A "Radical Dance" in Thiamin Biosynthesis: Mechanistic Analysis of the Bacterial Hydroxymethylpyrimidine Phosphate Synthase". Angewandte Chemie International Edition. 49 (46): 8653–8656. doi:10.1002/anie.201003419. PMC 3147014. PMID 20886485.
  5. R. Caspi (2019-09-23). "Pathway: 5-hydroxybenzimidazole biosynthesis (anaerobic)". MetaCyc Metabolic Pathway Database. Retrieved 2022-02-10.
  6. Mehta, Angad P.; Abdelwahed, Sameh H.; Fenwick, Michael K.; Hazra, Amrita B.; Taga, Michiko E.; Zhang, Yang; Ealick, Steven E.; Begley, Tadhg P. (2015). "Anaerobic 5-Hydroxybenzimidazole Formation from Aminoimidazole Ribotide: An Unanticipated Intersection of Thiamin and Vitamin B12 Biosynthesis". Journal of the American Chemical Society. 137 (33): 10444–10447. doi:10.1021/jacs.5b03576. PMC 4753784. PMID 26237670.
  7. ^ Welin, Martin; Grossmann, Jörg Günter; Flodin, Susanne; Nyman, Tomas; Stenmark, Pål; Trésaugues, Lionel; Kotenyova, Tetyana; Johansson, Ida; Nordlund, Pär; Lehtiö, Lari (2010). "Structural studies of tri-functional human GART". Nucleic Acids Research. 38 (20): 7308–7319. doi:10.1093/nar/gkq595. PMC 2978367. PMID 20631005.
Nucleotide metabolic intermediates
purine
metabolism
anabolism
R5PIMP:
IMPAMP:Adenylosuccinate
IMPGMP:Xanthosine monophosphate
catabolism
pyrimidine
metabolism
anabolism
catabolism
uracil:
thymine:
Category: