Misplaced Pages

Glycoside hydrolase family 68

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Protein family
Levansucrase/Invertase
crystal structure of levansucrase (e342a) complexed with sucrose
Identifiers
SymbolGlyco_hydro_68
PfamPF02435
Pfam clanCL0143
InterProIPR003469
SCOP21oyg / SCOPe / SUPFAM
CAZyGH68
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

In molecular biology, glycoside hydrolase family 68 is a family of glycoside hydrolases.

Glycoside hydrolases EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families. This classification is available on the CAZy web site, and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes.

The glycosyl hydrolase 68 family (CAZY GH_68) includes several bacterial levansucrase enzymes, and invertase from Zymomonas. Levansucrase (EC 2.4.1.10), also known as beta-D-fructofuranosyl transferase, catalyses the conversion of sucrose and (2,6-beta-D-fructosyl)(N) to glucose and (2,6-beta-D-fructosyl)(N+1), where other sugars can also act as fructosyl acceptors. Invertase, or extracellular sucrase (EC 3.2.1.26), catalyses the hydrolysis of terminal non-reducing beta-D-fructofuranoside residues in beta-D-fructofuranosides.

References

  1. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (July 1995). "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proceedings of the National Academy of Sciences of the United States of America. 92 (15): 7090–4. Bibcode:1995PNAS...92.7090H. doi:10.1073/pnas.92.15.7090. PMC 41477. PMID 7624375.
  2. Davies G, Henrissat B (September 1995). "Structures and mechanisms of glycosyl hydrolases". Structure. 3 (9): 853–9. doi:10.1016/S0969-2126(01)00220-9. PMID 8535779.
  3. Henrissat B, Bairoch A (June 1996). "Updating the sequence-based classification of glycosyl hydrolases". The Biochemical Journal. 316 ( Pt 2) (Pt 2): 695–6. doi:10.1042/bj3160695. PMC 1217404. PMID 8687420.
  4. "Home". CAZy.org. Retrieved 2018-03-06.
  5. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (January 2014). "The carbohydrate-active enzymes database (CAZy) in 2013". Nucleic Acids Research. 42 (Database issue): D490–5. doi:10.1093/nar/gkt1178. PMC 3965031. PMID 24270786.
  6. "Glycoside Hydrolase Family 68". CAZypedia.org. Retrieved 2018-03-06.
  7. CAZypedia Consortium (December 2018). "Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes" (PDF). Glycobiology. 28 (1): 3–8. doi:10.1093/glycob/cwx089. hdl:21.11116/0000-0003-B7EB-6. PMID 29040563.
This article incorporates text from the public domain Pfam and InterPro: IPR003469
Hydrolase: sugar hydrolases (EC 3.2)
3.2.1: Glycoside hydrolases
Disaccharidase
Glucosidases
Other
3.2.2: Hydrolysing
N-Glycosyl compounds
Enzymes
Activity
Regulation
Classification
Kinetics
Types
Portal: Categories: