This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (August 2022) (Learn how and when to remove this message) |
Goodman's conjecture on the coefficients of multivalent functions was proposed in complex analysis in 1948 by Adolph Winkler Goodman, an American mathematician.
Formulation
Let be a -valent function. The conjecture claims the following coefficients hold:
Partial results
It's known that when , the conjecture is true for functions of the form where is a polynomial and is univalent.
External sources
- Goodman, A. W. (1948). "On some determinants related to 𝑝-valent functions". Transactions of the American Mathematical Society. 63: 175–192. doi:10.1090/S0002-9947-1948-0023910-X.
- Lyzzaik, Abdallah; Styer, David (1978). "Goodman's conjecture and the coefficients of univalent functions". Proceedings of the American Mathematical Society. 69: 111–114. doi:10.1090/S0002-9939-1978-0460619-7.
- Grinshpan, Arcadii Z. (2002). "Logarithmic Geometry, Exponentiation, and Coefficient Bounds in the Theory of Univalent Functions and Nonoverlapping Domains". Geometric Function Theory. Handbook of Complex Analysis. Vol. 1. pp. 273–332. doi:10.1016/S1874-5709(02)80012-9. ISBN 978-0-444-82845-3.
- AGrinshpan, A.Z. (1997). "On the Goodman conjecture and related functions of several complex variables". Department of Mathematics, University of South Florida, Tampa, FL. 9 (3): 198–204. MR 1466800.
- Grinshpan, A. Z. (1995). "On an identity related to multivalent functions". Proceedings of the American Mathematical Society. 123 (4): 1199. doi:10.1090/S0002-9939-1995-1242085-7.