Misplaced Pages

HTV-X

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Uncrewed cargo spacecraft developed by JAXA

This article or section may need to be cleaned up or summarized because it has been split from/to H-II Transfer Vehicle.
HTV-X
ManufacturerMitsubishi Heavy Industries
Country of originJapan
OperatorJAXA
ApplicationsISS resupply
Specifications
Spacecraft typeCargo
Launch mass16,000 kg (35,000 lb)
Payload capacityPressurised: 4,070 kg (8,970 lb)
Unpressurised: 1,750 kg (3,860 lb)
VolumePressurised: 78 m (2,800 cu ft)
Power3 kW
Design life
  • 6 months (berthed to ISS)
  • 1.5 years (after departure from ISS)
Dimensions
Length8 m (26 ft)
Diameter4.4 m (14 ft)
Production
StatusIn development
Maiden launch2025 (planned)
Related spacecraft
Derived fromH-II Transfer Vehicle
Launch vehicleH3

New Space Station Resupply Vehicle (新型宇宙ステーション補給機, Shingata Uchū Sutēshon Hokyūki), tentatively called HTV-X, is an expendable Japanese cargo spacecraft used for International Space Station (ISS) resupply missions. The spacecraft is under development by Japan Aerospace Exploration Agency (JAXA) as the successor of H-II Transfer Vehicle (HTV). As of December 2023, the first flight is planned to be launched in early 2025.

Development

In May 2015, Japan's Ministry of Education, Culture, Sports, Science and Technology announced a proposal to replace the HTV with an improved, cost-reduced version preliminarily called HTV-X.

The proposal of HTV-X as of July 2015 is as follows:

  • To re-use the design of HTV's Pressurised Logistics Carrier (PLC) as much as possible, except for adding a side hatch for late cargo access after the spacecraft-launch vehicle integration.
  • To replace the Unpressurised Logistics Carrier (ULC), Avionics Module, and Propulsion Module with a new Service Module.
  • To load the unpressurised cargo on top of the Service Module rather than inside the spacecraft.

Re-using the PLC design will allow minimizing the development cost and risk. Concentrating the reaction control system (RCS) and the solar panels on the Service Module will simplify the wiring and piping, to reduce the weight and manufacturing cost. Loading the unpressurised cargo outside the spacecraft allows larger cargo, only limited by the launch vehicle fairing. The aim is to cut the cost in half, while keeping or extending the capability of the existing HTV.

By the simplification of the overall structure it was expected the launch mass of HTV-X to be dropped to 15,500 kg from HTV's 16,500 kg, while the maximum weight of cargo will be increased to 7,200 kg (net weight 5,850 kg excluding support structure weight) from HTV's 6,000 kg (net 4,000 kg).

In December 2015, the plan to develop HTV-X was approved by the Strategic Headquarters for Space Policy of the Cabinet Office, targeting launch in fiscal year 2021 for the flight of HTV-X1 (Technical Demonstration Vehicle) by the H3 Launch Vehicle. As of June 2019, NASA's Flight Planning Integration Panel had set the launch of HTV-X1 for February 2022.

With the Japan-US Open Platform Partnership Program (JP-US OP3) agreement in December 2015 to extend cooperation on ISS operations through 2024, Japan will provide its share of ISS operation costs with the form of transportation by HTV-X, and also be given an opportunity to develop a possible small return capsule.

In the 2017 design, HTV-X consists of three modules: a lower, 3.5 m-long pressurised logistics module nearly identical to that of the HTV, elongated by 0.2 m and with a side access hatch added to allow late loading while mated to the rocket; a 2.7 m-long central Service Module capable of operating independently of the other modules, which contains two arrays of solar panels generating 1 kW of electrical power as opposed to the 200 W generated by the HTV, batteries capable of providing a peak output of 3 kW compared to the 2 kW of the original, and a 1 Mbit/s communication link in addition to the original 8 kbit/s link, though the main thrusters have been removed, so the HTV-X is purely reliant on Reaction Control System (RCS) motors mounted in a ring around the Service Module for propulsion, selected service module components have been mounted externally on the top for easy astronaut access. The last component is a 3.8 m long unpressurised cargo module, essentially a hollow cylinder with shelves that vastly expands the volume of unpressurised cargo.

The HTV-X has a length of 6.2 m, or 10 m with the unpressurised cargo module fitted. The payload fairing adaptor and payload dispenser have been widened from 1.7 m to 4.4 m to allow the pressurised cargo module to be swapped out for alternate modules, to add increased structural strength, and to accommodate the side hatch.

In the 2021 final design, the side hatch of the pressurised module was abandoned, and the late cargo access is to use main hatch through the rocket's Payload Adapter Fitting (PAF).

Other payloads being considered to replace the unpressurised cargo module while carrying out ISS resupply missions are an external sensor package, a technology trial of an IDSS airlock with automated station docking as used by the Progress and ATV craft, a trial of rendezvous and docking with a simulated satellite module, a smaller satellite piggybacking the launch to reach ISS orbit, a station return capsule, assembling a beyond Earth orbit mission such as lunar lander from smaller modules and acting as a space tug shuttling orbiting unpressurised cargo modules to the ISS allowing stuff such as recyclable materials, excess propellant and spare parts to be stored in orbit for future use rather than discarded.

As of 2021, an evolutionary version of HTV-X called HTV-XG is being considered for transferring cargo to the Lunar Gateway as part of the Artemis program.

The HTV-X is manfacturered by Mitsubishi Heavy Industries with contributions from Mitsubishi Electric and the American company Sierra Nevada Corporation which provides the Common Berthing Mechanism and hatch kit.

Flights

As of February 2021, three flights are planned to resupply ISS.

HTV Launch date/time (UTC) Berth date/time (UTC) Carrier rocket Reentry date/time (UTC) Outcome
HTV-X1 September 2025 H3-24
HTV-X2 JFY2026 H3-24
HTV-X3 JFY2026 H3-24

See also

References

  1. ^ 新型宇宙ステーション補給機(HTV‐X)の開発状況について (PDF) (in Japanese). Ministry of Education, Culture, Sports, Science. 9 February 2021. Retrieved 4 March 2021.
  2. ^ "HTV-X". JAXA. Retrieved 30 January 2022.
  3. ^ "宇宙基本計画⼯程表 (令和5年度改訂)" [Basic Plan on Space Policy (2023 Revision)] (PDF) (in Japanese). Cabinet Office. 22 December 2023. p. 45. Archived (PDF) from the original on 25 December 2023. Retrieved 26 December 2023.
  4. 2016年~2020年のISS共通システム運用経費(次期CSOC)の我が国の負担方法の在り方について (PDF). Research and Development Division, Ministry of Education, Culture, Sports, Science and Technology. 20 May 2015. Archived (PDF) from the original on 5 June 2015. Retrieved 4 June 2015.
  5. "国際宇宙ステーション計画を含む有人計画について" (PDF) (in Japanese). 3 June 2015. Archived (PDF) from the original on 13 July 2015. Retrieved 13 July 2015.
  6. ^ HTV-X(仮称)の開発(案)について (PDF) (in Japanese). 2 July 2015. Archived (PDF) from the original on 20 July 2015. Retrieved 17 July 2015.
  7. ^ JAXA (14 July 2016). HTV‐Xの開発状況について (PDF) (in Japanese). Archived (PDF) from the original on 15 July 2016. Retrieved 18 July 2016.
  8. 宇宙基本計画工程表(平成27年度改訂) (PDF) (in Japanese). Strategic Headquarters for Space Policy. 8 December 2015. Archived (PDF) from the original on 20 October 2016. Retrieved 18 July 2016.
  9. Gebhardt, Chris (20 June 2019). "Station mission planning reveals new target Commercial Crew launch dates". NASASpaceFlight.com. Retrieved 20 June 2019. The new HTV is known as HTV-X and is now planned to make its inaugural trip to the Station in February 2022.
  10. "Japan – United States Space Cooperation and the International Space Station Program" (PDF). Ministry of Education, Culture, Sports, Science, and Technology. 22 December 2015. Archived (PDF) from the original on 8 August 2016. Retrieved 25 July 2016.
  11. "新型宇宙ステーション補給機(HTV-X(仮称))プロジェクト移行審査の結果について" [New Space Station Resupply Vehicle (HTV-X (provisional name)) Project Progress Review] (PDF). JAXA (in Japanese). 6 December 2017. Retrieved 20 June 2019.
  12. JAXA (30 June 2021). アルテミス計画に関する各国の開発状況について (PDF) (in Japanese). Ministry of Education, Cultura, Sports and Technology. Retrieved 9 July 2021.
  13. "Ozmens' Sierra Nevada Corporation to Provide Hardware for Japanese HTV-X International Space Station Missions". Sierra Nevada Corporation (Press release). 31 May 2019. Retrieved 6 September 2024.
  14. "HTV-X1". Next Spaceflight. Retrieved 26 October 2024.

External links

H-II Transfer Vehicle (Kounotori) spaceflights
HTV missions
  • 1 (Sep 2009)
  • 2 (Jan 2011)
  • 3 (Jul 2012)
  • 4 (Aug 2013)
  • 5 (Aug 2015)
  • 6 (Dec 2016)
  • 7 (Sep 2018)
  • 8 (Sep 2019)
  • 9 (May 2020)
HTV-X missions
See also
Cargo spacecraft
Active
In development
Retired
Proposed
Cancelled
International Space Station
Origins
Support vehicles
Current
Future
Former
Cancelled
Mission control
Administrative
Documentaries
Related
Components
Orbiting
Russian Segment
US Segment
Subsystems
Experimental
devices
ISS components
Former
Major
components
Future
Planned
Spare
hardware
Cancelled
Related
Expeditions
2000–2004
2005–2009
2010–2014
2015–2019
Since 2020
Related
  • Displayed and current expeditions are in underline
  • Future expeditions in italics
  • Category
  • List
ISS Human spaceflights
1998–2004
2005–2009
2010–2014
2015–2019
Since 2020
Future
Individuals
Vehicles
  • Ongoing spaceflights are in underline
  • † - mission failed to reach ISS
Uncrewed spaceflights
2000–2004
2005–2009
2010–2014
2015–2019
2020–2024
Future
Spacecraft
  • Ongoing spaceflights in underline
  • Future spaceflights in italics
  • † - mission failed to reach ISS
Japanese space program
  • Italics indicates projects in development.
  • Symbol indicates failed projects.
  • Strikethrough lines indicate cancelled projects.
Space agencies
National space agencies
Joint development partners
Astronomical observation
Past
Active
Future
Communications satellites, broadcasting satellites and satellite navigation systems
Past
Active
Future
Earth observation
Past
Active
Future
Engineering tests
Past
Active
Future
Human spaceflight
Past
Active
Future
Space probes
The Moon
Past
Active
Future
Others
Past
Active
Future
Reconnaissance satellites
Past
  • IGS-Optical
    • 1
    • 2
    • Experimentally 3
  • IGS-Radar
    • 1
    • 2
Active
  • IGS-Optical
    • 3
    • 4
    • 5
    • 6
    • Experimentally 5
  • IGS-Radar
    • 3
    • 4
    • Spare
    • 5
    • 6
Future
  • IGS-Optical
    • 7
    • 8
  • IGS-Radar
    • 7
    • 8
Private small satellites
Past
Active
Future
Categories: