Misplaced Pages

Half-metal

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Not to be confused with semi-metal.
The electronic structure of a half-metal. E f {\displaystyle E_{f}} is the Fermi level, N ( E ) {\displaystyle N(E)} is the density of states for spin down (on the left) and spin up (on the right). In this case, the half-metal is conducting in the minority spin channel.

A half-metal is any substance that acts as a conductor to electrons of one spin orientation, but as an insulator or semiconductor to those of the opposite orientation. Although all half-metals are ferromagnetic (or ferrimagnetic), most ferromagnets are not half-metals. Many of the known examples of half-metals are oxides, sulfides, or Heusler alloys. Types of half-metallic compounds theoretically predicted so far include some Heusler alloys, such as Co2FeSi, NiMnSb, and PtMnSb; some Si-containing half–Heusler alloys with Curie temperatures over 600 K, such as NiCrSi and PdCrSi; some transition-metal oxides, including rutile structured CrO2; some perovskites, such as LaMnO3 and SeMnO3; and a few more simply structured zincblende (ZB) compounds, including CrAs and superlattices. NiMnSb and CrO2 have been experimentally determined to be half-metals at very low temperatures.

In half-metals, the valence band for one spin orientation is partially filled while there is a gap in the density of states for the other spin orientation. This results in conducting behavior for only electrons in the first spin orientation. In some half-metals, the majority spin channel is the conducting one while in others the minority channel is.

Half-metals were first described in 1983, as an explanation for the electrical properties of manganese-based Heusler alloys.

Some notable half-metals are chromium(IV) oxide, magnetite, and lanthanum strontium manganite (LSMO), as well as chromium arsenide. Half-metals have attracted some interest for their potential use in spintronics.

References

  1. ^ Coey, J.M.D.; Venkatesan, M. (2002). "Half-metallic ferromagnetism: Example of CrO2". Journal of Applied Physics. 91 (10): 8345–50. Bibcode:2002JAP....91.8345C. doi:10.1063/1.1447879.
  2. Rostami, Mohammad; Afkani, Mohammad; Torkamani, Mohammad Reza; Kanjouri, Faramarz (2020-07-01). "Bulk and surface DFT investigations of the electronic and magnetic properties of CsXNO (X = Mg, Ca and Sr) quaternary Heusler alloys". Materials Chemistry and Physics. 248: 122923. doi:10.1016/j.matchemphys.2020.122923. ISSN 0254-0584.
  3. de Groot, R. A.; Mueller, F. M.; Engen, P. G. van; Buschow, K. H. J. (20 June 1983). "New Class of Materials: Half-Metallic Ferromagnets" (PDF). Physical Review Letters. 50 (25): 2024–2027. Bibcode:1983PhRvL..50.2024D. doi:10.1103/PhysRevLett.50.2024. hdl:11370/e3946f6b-8acb-4e0a-80cf-735506203f25.

Further reading


Stub icon

This condensed matter physics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: