Misplaced Pages

Pyramidal number

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Heptagonal pyramidal number) Figurate number
Geometric representation of the square pyramidal number 1 + 4 + 9 + 16 = 30.

A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. The numbers of points in the base and in layers parallel to the base are given by polygonal numbers of the given number of sides, while the numbers of points in each triangular side is given by a triangular number. It is possible to extend the pyramidal numbers to higher dimensions.

Formula

The formula for the nth r-gonal pyramidal number is

P n r = 3 n 2 + n 3 ( r 2 ) n ( r 5 ) 6 , {\displaystyle P_{n}^{r}={\frac {3n^{2}+n^{3}(r-2)-n(r-5)}{6}},}

where r N {\displaystyle \mathbb {N} } , r ≥ 3.

This formula can be factored:

P n r = n ( n + 1 ) ( n ( r 2 ) ( r 5 ) ) ( 2 ) ( 3 ) = ( n ( n + 1 ) 2 ) ( n ( r 2 ) ( r 5 ) 3 ) = T n n ( r 2 ) ( r 5 ) 3 , {\displaystyle P_{n}^{r}={\frac {n(n+1){\bigl (}n(r-2)-(r-5){\bigr )}}{(2)(3)}}=\left({\frac {n(n+1)}{2}}\right)\left({\frac {n(r-2)-(r-5)}{3}}\right)=T_{n}\cdot {\frac {n(r-2)-(r-5)}{3}},}

where Tn is the nth triangular number.

Sequences

The first few triangular pyramidal numbers (equivalently, tetrahedral numbers) are:

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... (sequence A000292 in the OEIS)

The first few square pyramidal numbers are:

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, ... (sequence A000330 in the OEIS).

The first few pentagonal pyramidal numbers are:

1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726, 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610, 4200, 4851, 5566, 6348, 7200, 8125, 9126 (sequence A002411 in the OEIS).

The first few hexagonal pyramidal numbers are:

1, 7, 22, 50, 95, 161, 252, 372, 525, 715, 946, 1222, 1547, 1925 (sequence A002412 in the OEIS).

The first few heptagonal pyramidal numbers are:

1, 8, 26, 60, 115, 196, 308, 456, 645, 880, 1166, 1508, 1911, ... (sequence A002413 in the OEIS)

References

  1. ^ Weisstein, Eric W. "Pyramidal Number". MathWorld.
  2. Sloane, N. J. A. (ed.). "Sequence A002414". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. Beiler, Albert H. (1966), Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Courier Dover Publications, p. 194, ISBN 9780486210964.
Figurate numbers
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Higher dimensional
non-centered
Category: