Misplaced Pages

Hermite's cotangent identity

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Not to be confused with Hermite's identity, a statement about fractional parts of integer multiples of real numbers.

In mathematics, Hermite's cotangent identity is a trigonometric identity discovered by Charles Hermite. Suppose a1, ..., an are complex numbers, no two of which differ by an integer multiple of π. Let

A n , k = 1 j n j k cot ( a k a j ) {\displaystyle A_{n,k}=\prod _{\begin{smallmatrix}1\leq j\leq n\\j\neq k\end{smallmatrix}}\cot(a_{k}-a_{j})}

(in particular, A1,1, being an empty product, is 1). Then

cot ( z a 1 ) cot ( z a n ) = cos n π 2 + k = 1 n A n , k cot ( z a k ) . {\displaystyle \cot(z-a_{1})\cdots \cot(z-a_{n})=\cos {\frac {n\pi }{2}}+\sum _{k=1}^{n}A_{n,k}\cot(z-a_{k}).}

The simplest non-trivial example is the case n = 2:

cot ( z a 1 ) cot ( z a 2 ) = 1 + cot ( a 1 a 2 ) cot ( z a 1 ) + cot ( a 2 a 1 ) cot ( z a 2 ) . {\displaystyle \cot(z-a_{1})\cot(z-a_{2})=-1+\cot(a_{1}-a_{2})\cot(z-a_{1})+\cot(a_{2}-a_{1})\cot(z-a_{2}).\,}

Notes and references

  1. Warren P. Johnson, "Trigonometric Identities à la Hermite", American Mathematical Monthly, volume 117, number 4, April 2010, pages 311–327
Category: