In mathematics, Humbert series are a set of seven hypergeometric series Φ1 , Φ2 , Φ3 , Ψ1 , Ψ2 , Ξ1 , Ξ2 of two variables that generalize Kummer's confluent hypergeometric series 1 F 1 of one variable and the confluent hypergeometric limit function 0 F 1 of one variable. The first of these double series was introduced by Pierre Humbert (1920 ).
Definitions
The Humbert series Φ1 is defined for |x | < 1 by the double series:
Φ
1
(
a
,
b
,
c
;
x
,
y
)
=
F
1
(
a
,
b
,
−
,
c
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
a
)
m
+
n
(
b
)
m
(
c
)
m
+
n
m
!
n
!
x
m
y
n
,
{\displaystyle \Phi _{1}(a,b,c;x,y)=F_{1}(a,b,-,c;x,y)=\sum _{m,n=0}^{\infty }{\frac {(a)_{m+n}(b)_{m}}{(c)_{m+n}\,m!\,n!}}\,x^{m}y^{n}~,}
where the Pochhammer symbol (q )n represents the rising factorial:
(
q
)
n
=
q
(
q
+
1
)
⋯
(
q
+
n
−
1
)
=
Γ
(
q
+
n
)
Γ
(
q
)
,
{\displaystyle (q)_{n}=q\,(q+1)\cdots (q+n-1)={\frac {\Gamma (q+n)}{\Gamma (q)}}~,}
where the second equality is true for all complex
q
{\displaystyle q}
except
q
=
0
,
−
1
,
−
2
,
…
{\displaystyle q=0,-1,-2,\ldots }
.
For other values of x the function Φ1 can be defined by analytic continuation .
The Humbert series Φ1 can also be written as a one-dimensional Euler -type integral :
Φ
1
(
a
,
b
,
c
;
x
,
y
)
=
Γ
(
c
)
Γ
(
a
)
Γ
(
c
−
a
)
∫
0
1
t
a
−
1
(
1
−
t
)
c
−
a
−
1
(
1
−
x
t
)
−
b
e
y
t
d
t
,
ℜ
c
>
ℜ
a
>
0
.
{\displaystyle \Phi _{1}(a,b,c;x,y)={\frac {\Gamma (c)}{\Gamma (a)\Gamma (c-a)}}\int _{0}^{1}t^{a-1}(1-t)^{c-a-1}(1-xt)^{-b}e^{yt}\,\mathrm {d} t,\quad \Re \,c>\Re \,a>0~.}
This representation can be verified by means of Taylor expansion of the integrand, followed by termwise integration.
Similarly, the function Φ2 is defined for all x , y by the series:
Φ
2
(
b
1
,
b
2
,
c
;
x
,
y
)
=
F
1
(
−
,
b
1
,
b
2
,
c
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
b
1
)
m
(
b
2
)
n
(
c
)
m
+
n
m
!
n
!
x
m
y
n
,
{\displaystyle \Phi _{2}(b_{1},b_{2},c;x,y)=F_{1}(-,b_{1},b_{2},c;x,y)=\sum _{m,n=0}^{\infty }{\frac {(b_{1})_{m}(b_{2})_{n}}{(c)_{m+n}\,m!\,n!}}\,x^{m}y^{n}~,}
the function Φ3 for all x , y by the series:
Φ
3
(
b
,
c
;
x
,
y
)
=
Φ
2
(
b
,
−
,
c
;
x
,
y
)
=
F
1
(
−
,
b
,
−
,
c
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
b
)
m
(
c
)
m
+
n
m
!
n
!
x
m
y
n
,
{\displaystyle \Phi _{3}(b,c;x,y)=\Phi _{2}(b,-,c;x,y)=F_{1}(-,b,-,c;x,y)=\sum _{m,n=0}^{\infty }{\frac {(b)_{m}}{(c)_{m+n}\,m!\,n!}}\,x^{m}y^{n}~,}
the function Ψ1 for |x | < 1 by the series:
Ψ
1
(
a
,
b
,
c
1
,
c
2
;
x
,
y
)
=
F
2
(
a
,
b
,
−
,
c
1
,
c
2
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
a
)
m
+
n
(
b
)
m
(
c
1
)
m
(
c
2
)
n
m
!
n
!
x
m
y
n
,
{\displaystyle \Psi _{1}(a,b,c_{1},c_{2};x,y)=F_{2}(a,b,-,c_{1},c_{2};x,y)=\sum _{m,n=0}^{\infty }{\frac {(a)_{m+n}(b)_{m}}{(c_{1})_{m}(c_{2})_{n}\,m!\,n!}}\,x^{m}y^{n}~,}
the function Ψ2 for all x , y by the series:
Ψ
2
(
a
,
c
1
,
c
2
;
x
,
y
)
=
Ψ
1
(
a
,
−
,
c
1
,
c
2
;
x
,
y
)
=
F
2
(
a
,
−
,
−
,
c
1
,
c
2
;
x
,
y
)
=
F
4
(
a
,
−
,
c
1
,
c
2
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
a
)
m
+
n
(
c
1
)
m
(
c
2
)
n
m
!
n
!
x
m
y
n
,
{\displaystyle \Psi _{2}(a,c_{1},c_{2};x,y)=\Psi _{1}(a,-,c_{1},c_{2};x,y)=F_{2}(a,-,-,c_{1},c_{2};x,y)=F_{4}(a,-,c_{1},c_{2};x,y)=\sum _{m,n=0}^{\infty }{\frac {(a)_{m+n}}{(c_{1})_{m}(c_{2})_{n}\,m!\,n!}}\,x^{m}y^{n}~,}
the function Ξ1 for |x | < 1 by the series:
Ξ
1
(
a
1
,
a
2
,
b
,
c
;
x
,
y
)
=
F
3
(
a
1
,
a
2
,
b
,
−
,
c
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
a
1
)
m
(
a
2
)
n
(
b
)
m
(
c
)
m
+
n
m
!
n
!
x
m
y
n
,
{\displaystyle \Xi _{1}(a_{1},a_{2},b,c;x,y)=F_{3}(a_{1},a_{2},b,-,c;x,y)=\sum _{m,n=0}^{\infty }{\frac {(a_{1})_{m}(a_{2})_{n}(b)_{m}}{(c)_{m+n}\,m!\,n!}}\,x^{m}y^{n}~,}
and the function Ξ2 for |x | < 1 by the series:
Ξ
2
(
a
,
b
,
c
;
x
,
y
)
=
Ξ
1
(
a
,
−
,
b
,
c
;
x
,
y
)
=
F
3
(
a
,
−
,
b
,
−
,
c
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
a
)
m
(
b
)
m
(
c
)
m
+
n
m
!
n
!
x
m
y
n
.
{\displaystyle \Xi _{2}(a,b,c;x,y)=\Xi _{1}(a,-,b,c;x,y)=F_{3}(a,-,b,-,c;x,y)=\sum _{m,n=0}^{\infty }{\frac {(a)_{m}(b)_{m}}{(c)_{m+n}\,m!\,n!}}\,x^{m}y^{n}~.}
Related series
There are four related series of two variables, F 1 , F 2 , F 3 , and F 4 , which generalize Gauss's hypergeometric series 2 F 1 of one variable in a similar manner and which were introduced by Paul Émile Appell in 1880.
References
Appell, Paul ; Kampé de Fériet, Joseph (1926). Fonctions hypergéométriques et hypersphériques; Polynômes d'Hermite (in French). Paris: Gauthier–Villars. JFM 52.0361.13 . (see p. 126)
Bateman, H. ; Erdélyi, A. (1953). Higher Transcendental Functions, Vol. I (PDF). New York: McGraw–Hill. Archived from the original (PDF) on 2011-08-11. Retrieved 2012-05-23. (see p. 225)
Gradshteyn, Izrail Solomonovich ; Ryzhik, Iosif Moiseevich ; Geronimus, Yuri Veniaminovich ; Tseytlin, Michail Yulyevich ; Jeffrey, Alan (2015) . "9.26.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products . Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 978-0-12-384933-5 . LCCN 2014010276 .
Humbert, Pierre (1920). "Sur les fonctions hypercylindriques". Comptes rendus hebdomadaires des séances de l'Académie des sciences (in French). 171 : 490–492. JFM 47.0348.01 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑