Misplaced Pages

Hydrolysis constant

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The word hydrolysis is applied to chemical reactions in which a substance reacts with water. In organic chemistry, the products of the reaction are usually molecular, being formed by combination with H and OH groups (e.g., hydrolysis of an ester to an alcohol and a carboxylic acid). In inorganic chemistry, the word most often applies to cations forming soluble hydroxide or oxide complexes with, in some cases, the formation of hydroxide and oxide precipitates.

Metal hydrolysis and associated equilibrium constant values

The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:

p M + q H2O ⇌ Mp(OH)q + q H

and the corresponding formation constant as:

β p q = [ M p ( O H ) q ( p z q ) ] [ H + ] q [ M z + ] p {\displaystyle \beta _{pq}={\frac {^{q}}{^{p}}}}

and associated equilibria can be written as:

MOx(OH)z–2x(s) + z H ⇌ M + (z–x) H2O
MOx(OH)z–2x(s) + x H2O ⇌ M + z OH
p MOx(OH)z–2x(s) + (pz–q) H ⇌ Mp(OH)q + (pz–px–q) H2O

Aluminium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016 Hummel and Thoenen, 2023
Al + H2O ⇌ AlOH + H –4.97 −4.98 ± 0.02 −4.98 ± 0.02
Al + 2 H2O ⇌ Al(OH)2 + 2 H –9.3 −10.63 ± 0.09 −10.63 ± 0.09
Al + 3 H2O ⇌ Al(OH)3 + 3 H –15.0 −15.66 ± 0.23 −15.99 ± 0.23
Al + 4 H2O ⇌ Al(OH)4 + 4 H –23.0 −22.91 ± 0.10 −22.91 ± 0.10
2 Al + 2 H2O ⇌ Al2(OH)2 + 2 H –7.7 −7.62 ± 0.11 −7.62 ± 0.11
3 Al + 4 H2O ⇌ Al3(OH)4 + 4 H –13.94 −14.06 ± 0.22 −13.90 ± 0.12
13 Al + 28 H2O ⇌ Al13O4(OH)24 + 32 H –98.73 −100.03 ± 0.09 −100.03 ± 0.09
α-Al(OH)3(s) + 3 H ⇌ Al + 3 H2O 8.5 7.75 ± 0.08 7.75 ± 0.08
γ-AlOOH(s) + 3 H ⇌ Al + 2 H2O 7.69 ± 0.15 9.4 ± 0.4

Americium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction NIST46 Brown and Ekberg, 2016 Grenthe et al, 2020
Am + H2O ⇌ Am(OH) + H –6.5 ± 0.1 –7.22 ± 0.03 –7.2 ± 0.5
Am + 2 H2O ⇌ Am(OH)2 + 2 H –14.1 ± 0.3 –14.9 ± 0.2 –15.1 ± 0.7
Am + 3 H2O ⇌ Am(OH)3 + 3 H –25.7 –26.0 ± 0.2 –26.2 ± 0.5
Am + 3 H2O ⇌ Am(OH)3(am) + 3 H –16.9 ± 0.1 –16.9 ± 0.8 –16.9 ± 0.8
Am + 3 H2O ⇌ Am(OH)3(cr) + 3 H –15.2 –15.62 ± 0.04 –15.6 ± 0.6

Americium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016 Grenthe et al, 2020
AmO2 + H2O ⇌ AmO2(OH) + H –10.7 ± 0.2
AmO2 + 2 H2O ⇌ AmO2(OH)2 + 2 H –22.9 ± 0.7
AmO2 + H2O ⇌ AmO2(OH)(am) + H –5.4 ± 0.4 –5.3 ± 0.5

Antimony(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Lothenbach et al., 1999;

Kitamura et al., 2010

Filella and May, 2003
Sb(OH)3 + H ⇌ Sb(OH)2 + H2O 1.41 1.30 1.371
Sb(OH)3 + H2O ⇌ Sb(OH)4 + H ‒11.82 ‒11.93 ‒11.70
0.5 Sb2O3(s) + 1.5 H2O ⇌ Sb(OH)3 ‒4.24
Sb2O3(rhombic,s) + 3 H2O ⇌ 2 Sb(OH)3 ‒8.72 ‒10.00
Sb2O3(cubic,s) + 3 H2O ⇌ 2 Sb(OH)3 ‒11.40

Antimony(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Lothenbach et al., 1999; Kitamura et al., 2010
Sb(OH)5 + H2O ⇌ Sb(OH)6 + H ‒2.72 ‒2.72
12 Sb(OH)5 + 4 H2O ⇌ Sb12(OH)64 + 4 H 20.34 20.34
12 Sb(OH)5 + 5 H2O ⇌ Sb12(OH)65 + 5 H 16.72 16.72
12 Sb(OH)5 + 6 H2O ⇌ Sb12(OH)66 + 6 H 11.89 11.89
12 Sb(OH)5 + 7 H2O ⇌ Sb12(OH)67 + 7 H 6.07 6.07
0.5 Sb2O5(s) + 2.5 H2O ⇌ Sb(OH)5 ‒3.7
Sb2O5(am) + 5 H2O ⇌ 2 Sb(OH)5 ‒7.400

Arsenic(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Nordstrom and Archer, 2003 Nordstrom et al., 2014
As(OH)4 + H ⇌ As(OH)3 + H2O 9.29 9.17 9.24 ± 0.02

Arsenic(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer Khodakovsky et al. (1968) Nordstrom and Archer, 2003 Nordstrom et al., 2014
H2AsO4 + H ⇌ H3AsO4 2.24 2.21 2.26 ± 0.078 2.25 ± 0.04
HAsO4 + H ⇌ H2AsO4 6.93 6.99 ± 0.1 6.98 ± 0.11
AsO4 + H ⇌ HAsO4 11.51 11.80 ± 0.1 11.58 ± 0.05
HAsO4 + 2 H ⇌H3AsO4 9.20
AsO4 + 3 H ⇌ H3AsO4 20.70

Barium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Nordstrom et al., 1990 Brown and Ekberg, 2016
Ba + H2O ⇌ BaOH + H –13.47 –13.47 –13.32 ± 0.07

Berkelium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016
Bk + 3 H2O ⇌ Bk(OH)3(s) + 3 H –13.5 ± 1.0

Beryllium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976
Be + H2O ⇌ BeOH + H –5.10
Be + 2 H2O ⇌ Be(OH)2 + 2 H –23.65
Be + 3 H2O ⇌ Be(OH)3 + 3 H –23.25
Be + 4 H2O ⇌ Be(OH)4 + 4 H –37.42
2 Be + H2O ⇌ Be2OH + H –3.97
3 Be + 3 H2O ⇌ Be3(OH)3 + 3 H –8.92
6 Be + 8 H2O ⇌ Be6(OH)8 + 8 H –27.2
α-Be(OH)2(cr) + 2 H ⇌ Be + 2 H2O 6.69

Bismuth

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Lothenbach et

al., 1999

NIST46 Kitamura et

al., 2010

Brown and

Ekberg, 2016

Bi + H2O ⇌ BiOH + H –1.0 –0.92 –1.1 –0.920 –0.92 ± 0.15
Bi + 2 H2O ⇌ Bi(OH)2 + 2 H (–4) –2.56 –4.5 –2.560 ± 1.000 –2.59 ± 0.26
Bi + 3 H2O ⇌ Bi(OH)3 + 3 H –8.86 –5.31 –9.0 –8.940 ± 0.500 –8.78 ± 0.20
Bi + 4 H2O ⇌ Bi(OH)4 + 4 H –21.8 –18.71 –21.2 –21.660 ± 0.870 –22.06 ± 0.14
3 Bi + 4 H2O ⇌ Bi3(OH)4 + 4 H –0.80 –0.800
6 Bi + 12 H2O ⇌ Bi6(OH)12 + 12 H 1.34 1.340 0.98 ± 0.13
9 Bi + 20 H2O = Bi9(OH)20 + 20 H –1.36 –1.360
9 Bi + 21 H2O = Bi9(OH)21 + 21 H –3.25 –3.250
9 Bi + 22 H2O = Bi9(OH)22 + 22 H –4.86 –4.860
Bi(OH)3(am) + 3 H = Bi + 3 H2O 31.501 ± 0.927
α-Bi2O3(cr) + 6 H = 2 Bi + 3 H2O 0.76
BiO1.5(s, α) + 3 H = Bi + 1.5 H2O 3.46 31.501 ± 0.927 2.88 ± 0.64

Boron

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46
B(OH)3 + H2O ⇌ Be(OH)4 + H –9.236 –9.236 ± 0.002
2 B(OH)3 ⇌ B2(OH)5 + H –9.36 –9.306
3 B(OH)3 ⇌ B3O3(OH)4 + H + 2 H2O –7.03 –7.306
4 B(OH)3 ⇌ B4O5(OH)4 + 2 H + 3 H2O –16.3 –15.032

Cadmium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Powell et al., 2011 Brown and Ekberg, 2016
Cd + H2O ⇌ CdOH + H −10.08 –9.80 ± 0.10 −9.81 ± 0.10
Cd + 2 H2O ⇌ Cd(OH)2 + 2 H –20.35 –20.19 ± 0.13 −20.6 ± 0.4
Cd + 3 H2O ⇌ Cd(OH)3 + 3 H <–33.3 –33.5 ± 0.5 −33.5 ± 0.5
Cd + 4 H2O ⇌ Cd(OH)4 + 4 H –47.35 –47.28 ± 0.15 −47.25 ± 0.15
2 Cd + H2O ⇌ Cd2OH + H –9.390 –8.73 ± 0.01 −8.74 ± 0.10
4 Cd + 4 H2O ⇌ Cd4(OH)4 + H –32.85
Cd(OH)2(s) ⇌ Cd + 2 OH –14.28 ± 0.12
Cd(OH)2(s) + 2 H ⇌ Cd + 2 H2O 13.65 13.72 ± 0.12 13.71 ± 0.12

Calcium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Nordstrom et al., 1990 Brown and Ekberg, 2016
Ca + H2O ⇌ CaOH + H –12.85 –12.78 –12.57 ± 0.03
Ca(OH)2(cr) + 2 H ⇌ Ca + 2 H2O 22.80 22.8 22.75 ± 0.02

Californium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016
Cf + 3 H2O ⇌ Bk(OH)3(s) + 3 H –13.0 ± 1.0

Cerium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Brown and Ekberg, 2016
Ce + H2O ⇌ CeOH + H –8.3 –8.3 –8.31 ± 0.03
2 Ce + 2 H2O ⇌ Ce2(OH)2 + 2 H –16.0 ± 0.2
3 Ce + 5 H2O ⇌ Ce3(OH)5 + 5 H –34.6 ± 0.3
Ce(OH)3(s) + 3 H ⇌ Ce + 3 H2O 18.5 ± 0.5
Ce(OH)3(s) ⇌ Ce + 3 OH –22.1 ± 0.9

Chromium(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):

Reaction NIST46 Ball and Nordstrom, 1988
Cr + H2O ⇌ CrOH + H –5.5
Cr(OH)2(s) ⇌ Cr + 2 OH –17 ± 0.02

Chromium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Rai et al., 1987 Ball and Nordstrom, 1988 Brown and Ekberg, 2016
Cr + H2O ⇌ CrOH + H –4.0 –3.57 ± 0.08 –3.60 ± 0.07
Cr + 2 H2O ⇌ Cr(OH)2 + 2 H –9.7 –9.84 –9.65 ± 0.20
Cr + 3 H2O ⇌ Cr(OH)3 + 3 H –18 –16.19 –16.25 ± 0.19
Cr + 4 H2O ⇌ Cr(OH)4 + 4 H –27.4 –27.65 ± 0.12 –27.56 ± 0.21
2 Cr + 2 H2O ⇌ Cr2(OH)2 + 2 H –5.06 –5.0 –5.29 ± 0.16
3 Cr + 4 H2O ⇌ Cr3(OH)4 + 4 H –8.15 –10.75 ± 0.15 –9.10 ± 0.14
Cr(OH)3(s) + 3 H ⇌ Cr + 3 H2O 12 9.35 9.41 ± 0.17
Cr2O3(s) + 6 H ⇌ 2 Cr + 3 H2O 8.52
CrO1.5(s) + 3 H ⇌ Cr + 1.5 H2O 7.83 ± 0.10

Chromium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Ball and Nordstrom, 1998
CrO4 + H ⇌ HCrO4 6.51 6.55 ± 0.04
HCrO4 + H ⇌ H2CrO4 –0.20
CrO4– + 2 H ⇌ H2CrO4 6.31
2 HCrO4 ⇌ Cr2O7 + H2O 1.523
2 CrO4 + 2 H ⇌ Cr2O7 + H2O 14.7 ± 0.1

Cobalt(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Co + H2O ⇌ CoOH + H –9.65 −9.61 ± 0.17
Co + 2 H2O ⇌ Co(OH)2 + 2 H –18.8 −19.77 ± 0.11
Co + 3 H2O ⇌ Co(OH)3 + 3 H –31.5 −32.01 ± 0.33
Co + 4 H2O ⇌ Co(OH)4 + 4 H –46.3
2 Co + H2O ⇌ Co2(OH)3 + H –11.2
4 Co + 4 H2O ⇌ Co4(OH)4 + 4H –30.53
Co(OH)2(s) + 2 H ⇌ Co + 2 H2O 12.3 13.24 ± 0.12
CoO(s) + 2 H ⇌ Co + H2O 13.71 ± 0.10

Cobalt(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016
Co + H2O ⇌ CoOH + H −1.07 ± 0.11

Copper(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016
Cu + H2O ⇌ CuOH + H –7.8 ± 0.4
Cu + 2 H2O ⇌ Cu(OH)2 + 2 H –18.6 ± 0.6

Copper(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Plyasunova et al., 1997 Powell et al., 2007 Brown and Ekberg, 2016
Cu + H2O ⇌ CuOH + H < –8 –7.7 –7.97 ± 0.09 –7.95 ± 0.16 –7.64 ± 0.17
Cu + 2 H2O ⇌ Cu(OH)2 + 2 H (< –17.3) –17.3 –16.23 ± 0.15 –16.2 ± 0.2 –16.24 ± 0.03
Cu + 3 H2O ⇌ Cu(OH)3 + 3 H (< –27.8) –27.8 –26.63 ± 0.40 –26.60 ± 0.09 –26.65 ± 0.13
Cu + 4 H2O ⇌ Cu(OH)4 + 4 H –39.6 –39.6 –39.73 ± 0.17 –39.74 ± 0.18 –39.70 ± 0.19
2 Cu + H2O ⇌ Cu2(OH)3 + H –6.71 ± 0.30 –6.40 ± 0.12 –6.41 ± 0.17
2 Cu + 2 H2O ⇌ Cu2(OH)2 + 2 H –10.36 –10.3 –10.55 ± 0.17 –10.43 ± 0.07 –10.55 ± 0.02
3 Cu + 4 H2O ⇌ Cu3(OH)4 + 4 H –20.95 ± 0.30 –21.1 ± 0.2 –21.2 ± 0.4
CuO(s) + 2 H ⇌ Cu + H2O 7.62 7.64 ± 0.06 7.64 ± 0.06 7.63 ± 0.05
Cu(OH)2(s) + 2 H ⇌ Cu + 2 H2O 8.67 ± 0.05 8.68 ± 0.10

Curium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016
Cm + H2O ⇌ Cm(OH) + H −7.66 ± 0.07
Cm + 2 H2O ⇌ Cm(OH)2 + 2 H −15.9 ± 0.1
Cm + 3 H2O ⇌ Cm(OH)3(s) + 3 H −13.9 ± 0.4

Dysprosium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Dy + H2O ⇌ DyOH + H −8.0 −7.53 ± 0.14
Dy + 2 H2O ⇌ Dy(OH)2 + 2 H (–16.2)
Dy + 3 H2O ⇌ Dy(OH)3 + 3 H (–24.7)
Dy + 4 H2O ⇌ Dy(OH)4 + 4 H –33.5
2 Dy + 2 H2O ⇌ Dy2(OH)2 + 2 H −13.76 ± 0.20
3 Dy + 5 H2O ⇌ Dy3(OH)5 + 5 H −30.6 ± 0.3
Dy(OH)3(s) + 3 H ⇌ Dy + 3 H2O 15.9 16.26 ± 0.30
Dy(OH)3(c) + OH ⇌ Dy(OH)4 −3.6
Dy(OH)3(c) ⇌ Dy(OH)3 −8.8

Erbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Er + H2O ⇌ ErOH + H −7.9 −7.46 ± 0.09
Er + 2 H2O ⇌ Er(OH)2 + 2 H (−15.9)
Er + 3 H2O ⇌ Er(OH)3 + 3 H (−24.2)
Er + 4 H2O ⇌ Er(OH)4 + 4 H −32.6
2 Er + 2 H2O ⇌ Er2(OH)2 + 2 H −13.65 −13.50 ± 0.20
3 Er + 5 H2O ⇌ Er3(OH)5 + 5 H <−29.3 −31.0 ± 0.3
Er(OH)3(s) + 3 H ⇌ Er + 3 H2O 15.0 15.79 ± 0.30
Er(OH)3(c) + OH ⇌ Er(OH)4 −3.6
Er(OH)3(c) ⇌ Er(OH)3 ~ −9.2

Europium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Hummel et al., 2002 Brown and Ekberg, 2016
Eu + H2O ⇌ EuOH + H –7.8 –7.64 ± 0.04 –7.66 ± 0.05
Eu + 2 H2O ⇌ Eu(OH)2 + 2 H –15.1 ± 0.2
Eu + 3 H2O ⇌ Eu(OH)3 + 3 H –23.7 ± 0.1
Eu + 4 H2O ⇌ Eu(OH)4 + 4 H –36.2 ± 0.5
2 Eu + 2 H2O ⇌ Eu2(OH)2 + 2 H - –14.1 ± 0.2
3 Eu + 5 H2O ⇌ Eu3(OH)5 + 5 H - –32.0 ± 0.3
Eu(OH)3(s) + 3 H ⇌ Eu + 3 H2O 17.5 17.6 ± 0.8 (am)

14.9 ± 0.3 (cr)

16.48 ± 0.30
Eu(OH)3(s) ⇌ Eu + 3 OH –24.5 ± 0.7 (am)

–26.5 (cr)

Gadolinium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Gd + H2O ⇌ GdOH + H –8.0 –7.87 ± 0.05
Gd + 2 H2O ⇌ Gd(OH)2 + 2 H (–16.4)
Gd + 3 H2O ⇌ Gd(OH)3 + 3 H (–25.2)
Gd + 4 H2O ⇌ Gd(OH)4 + 4 H –34.4
2 Gd + 2 H2O ⇌ Gd2(OH)2 + 2 H –14.16 ± 0.20
3 Gd + 5 H2O ⇌ Gd3(OH)5 + 5 H –33.0 ± 0.3
Gd(OH)3(s) + 3 H ⇌ Gd + 3 H2O 15.6 17.20 ± 0.48
Gd(OH)3(c) + OH ⇌ Gd(OH)4 –4.8
Gd(OH)3(c) ⇌ Gd(OH)3 –9.6

Gallium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Smith et al., 2003 Brown and Ekberg, 2016
Ga + H2O ⇌ GaOH + H –2.6 –2.897 –2.74
Ga + 2 H2O ⇌ Ga(OH)2 + 2 H –5.9 –6.694 –7.0
Ga + 3 H2O ⇌ Ga(OH)3 + 3 H –10.3 –11.96
Ga + 4 H2O ⇌ Ga(OH)4 + 4 H –16.6 –16.588 –15.52
Ga(OH)3(s) ⇌ Ga + 3 OH {\displaystyle \approx } –37 –37.0
GaO(OH)(s) + H2O ⇌ Ga + 3 OH –39.06 –39.1 –40.51

Germanium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Wood and Samson, 2006 Filella and May, 2023
Ge(OH)4 ⇌ GeO(OH)3 + H –9.31 –9.32 ± 0.05 –9.099
Ge(OH)4 ⇌ GeO2(OH)2 + 2 H –21.9
GeO2(OH)2 + H ⇌ GeO(OH)3 12.76
8 Ge(OH)4 ⇌ Ge8O16(OH)3 + 13 H2O + 3 H –14.24
8 Ge(OH)4 + 3 OH ⇌ Ge8(OH)35 28.33
GeO2(s, hexa) + 2 H2O ⇌ Ge(OH)4 –1.35 –1.373
GeO2(s, tetra) + 2 H2O ⇌ Ge(OH)4 -4.37 –5.02 –4.999

Gold(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976
Au(OH)3 +2 H ⇌ AuOH + 2 H2O 1.51
Au(OH)3 + H ⇌ Au(OH)2 + H2O < 1.0
Au(OH)3 + H2O ⇌ Au(OH)4 + H –11.77
Au(OH)3 + 2 H2O ⇌ Au(OH)5 + 2 H –25.13
Au(OH)5 + 3 H2O ⇌ Au(OH)6– + 3 H < –41.1
Au(OH)3(c) ⇌ Au(OH)3 –5.51

Hafnium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Hf + H2O ⇌ HfOH + H –0.25 −0.26 ± 0.10
Hf + 2 H2O ⇌ Hf(OH)2 + 2 H (–2.4)
Hf + 3 H2O ⇌ Hf(OH)3 + 3 H (–6.0)
Hf + 4 H2O ⇌ Hf(OH)4 + 4 H –10.7* −3.75 ± 0.34*
Hf + 5 H2O ⇌ Hf(OH)5 + 5 H –17.2
3 Hf + 4 H2O ⇌ Hf3(OH)4 + 4 H 0.55 ± 0.30
4 Hf + 8 H2O ⇌ Hf4(OH)8 + 8 H 6.00 ± 0.30
HfO2(s) + 4 H ⇌ Hf + 2 H2O –1.2* –5.56 ± 0.15*
HfO2(am) + 4 H ⇌ Hf + 2 H2O –3.11 ± 0.20

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. Strongly suggested to refer to the original papers.

Holmium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Ho + H2O ⇌ HoOH + H −8.0 −7.43 ± 0.05
2 Ho + 2 H2O ⇌ Ho2(OH)2 + 2 H −13.5 ± 0.2
3 Ho + 5 H2O ⇌ Ho3(OH)5 + 5 H −30.9 ± 0.3
Ho(OH)3(s) + 3 H ⇌ Ho + 3 H2O 15.4 15.60 ± 0.30

Indium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Brown and Ekberg, 2016
In + H2O ⇌ InOH + H –4.00 –3.927 –3.96
In + 2 H2O ⇌ In(OH)2 + 2 H –7.82 –7.794 –9.16
In + 3 H2O ⇌ In(OH)3 + 3 H –12.4 –12.391
In + 4 H2O ⇌ In(OH)4 + 4 H –22.07 –22.088 –22.05
In(OH)3(s) ⇌ In + 3 OH –36.92 –36.9 –36.92
1/2 In2O3(s) + 3/2 H2O ⇌ In + 3 OH –35.24

Iridium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016
Ir + H2O ⇌ IrOH + H ‒3.77 ± 0.10
Ir + 2 H2O ⇌ Ir(OH)2 + 2 H ‒8.46 ± 0.20
Ir(OH)3(s) + 3 H ⇌ Ir + 3 H2O 8.88 ± 0.20

Iron(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Nordstrom et al., 1990 Hummel et al., 2002 Lemire et al., 2013 Brown and Ekberg, 2016
Fe + H2O ⇌ FeOH + H –9.3 –9.5 –9.5 –9.1 ± 0.4 −9.43 ± 0.10
Fe + 2 H2O ⇌ Fe(OH)2 + 2 H –20.5 −20.52 ± 0.08
Fe + 3 H2O ⇌ Fe(OH)3 + 3 H –29.4 −32.68 ± 0.15
Fe(OH)2(s) +2 H ⇌ Fe + 2 H2O 12.27 ± 0.88

Iron(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Lemire et al., 2013 Brown and Ekberg, 2016
Fe + H2O ⇌ FeOH + H –2.19 −2.15 ± 0.07 –2.20 ± 0.02
Fe + 2 H2O ⇌ Fe(OH)2 + 2 H –5.67 −4.8 ± 0.4 –5.71 ± 0.10
Fe + 3 H2O ⇌ Fe(OH)3 + 3 H <–12 <–14 –12.42 ± 0.20
Fe + 4 H2O ⇌ Fe(OH)4 + 4 H –21.6 −21.5 ± 0.5 –21.60 ± 0.23
2 Fe + 2 H2O ⇌ Fe2(OH)2 + 2 H –2.95 –2.91 ± 0.07 –2.91 ± 0.07
3 Fe + 4 H2O ⇌ Fe3(OH)4 + 4 H –6.3 −6.3 ± 0.1
Fe(OH)3(s) +3 H ⇌ Fe3 + 3 H2O

2-line ferrihydrite

2.5 3.5 3.50 ± 0.20
Fe(OH)3(s) ⇌ Fe + 3 OH

6-line ferrihydrite

−38.97 ± 0.64
α-FeOOH(s)+ 3 H ⇌ Fe + 2 H2O

goethite

0.5 0.33 ± 0.10
α-FeOOH + H2O ⇌ Fe + 3 OH

goethite

−41.83 ± 0.37
0.5 α-Fe2O3(s)+ 3 H ⇌ Fe + 1.5 H2O

hematite

0.36 ± 0.40
0.5 α-Fe2O3 + 1.5 H2O ⇌ Fe + 3 OH

hematite

−42.05 ± 0.26
0.5 γ-Fe2O3(s) + 3 H ⇌ Fe + 1.5 H2O

maghemite

1.61 ± 0.61
0.5 γ-Fe2O3 + 1.5 H2O ⇌ Fe + 3 OH

maghemite

−40.59 ± 0.29
α-FeOOH(s)+ 3 H ⇌ Fe + 2 H2O

lepidocrocite

1.85 ± 0.37
γ-FeOOH + H2O ⇌ Fe + 3 OH

lepidocrocite

−40.13 ± 0.37
Fe(OH)3(s) + 3 H ⇌ Fe + 3 H2O

magnetite

−12.26 ± 0.26

Lanthanum

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
La + H2O ⇌ LaOH + H –8.5 –8.89 ± 0.10
2 La + 2 H2O ⇌ La2(OH)2 + 2 H ≤ –17.5 –17.57 ± 0.20
3 La + 5 H2O ⇌ La3(OH)5 + 5 H ≤ –38.3 –37.8 ± 0.3
5 La + 9 H2O ⇌ La5(OH)9 + 9 H –71.2
La(OH)3(s) + 3 H ⇌ La + 3 H2O 20.3 19.72 ± 0.34

Lead(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Powell et al, 2009 Brown and Ekberg, 2016 Cataldo et al., 2018
Pb + H2O ⇌ PbOH+ + H –7.71 –7.6 –7.46 ± 0.06 –7.49 ± 0.13 –6.47± 0.03
Pb + 2 H2O ⇌ Pb(OH)2 + 2 H –17.12 –17.1 –16.94 ± 0.09 –16.99 ± 0.06 –16.12 ± 0.01
Pb + 3 H2O ⇌ Pb(OH) + 3 H –28.06 –28.1 –28.03± 0.06 –27.94 ± 0.21 –28.4 ± 0.1
Pb + 4 H2O ⇌ Pb(OH)4 + 4 H –40.8
2 Pb + H2O ⇌ Pb2(OH)3 + H –6.36 –6.4 –7.28± 0.09 –6.73 ± 0.31
3 Pb + 4 H2O ⇌ Pb3(OH)4 + 4 H –23.88 –23.9 –23.01 ± 0.07 –23.43 ± 0.10
3 Pb + 5 H2O ⇌ Pb3(OH)5 + 5 H –31.11 ± 0.10
4 Pb + 4 H2O ⇌ Pb4(OH)4 + 4 H –20.88 –20.9 –20.57± 0.06 –20.71 ± 0.18
6 Pb + 8 H2O ⇌ Pb6(OH)8 + 8 H –43.61 –43.6 –42.89± 0.07 –43.27 ± 0.47
PbO(s) + 2 H ⇌ Pb + H2O 12.62 (red)

12.90 (yellow)

PbO(s) +H2O ⇌ Pb + 2 OH –15.28 (red) -15.3 –15.3 (red)

–15.1 (yellow)

–15.37 ± 0.04 (red)

–15.1 ± 0.08 (yellow)

Pb2O(OH)2(s) +H2O ⇌ 2 Pb + 4 OH –14.9
PbO(s) +H2O ⇌ Pb(OH)2 –4.4 (red)

–4.2 (yellow)

Pb2O(OH)2(s) +H2O ⇌ 2 Pb(OH)2 –4.0
PbO(s) + 2 H2O ⇌ Pb(OH)3 + H –1.4 (red)

–1.2 (yellow)

Pb2O(OH)2(s) + 2 H2O ⇌ 2 Pb(OH)3 + 2 H –1.0

Lead(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Feitknecht and Schindler, 1963
β-PbO2 + 2 H2O ⇌ Pb + 4 OH –64
β-PbO2 + 2 H2O + 2 OH ⇌ Pb(OH)6 –4.5

Lithium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Nordstrom et al., 1990 Brown and Ekberg, 2016
Li + H2O ⇌ LiOH + H –13.64 –13.64 –13.84 ± 0.14

Magnesium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Nordstrom et al., 1990 Brown and Ekberg, 2016
Mg + H2O ⇌ MgOH + H –11.44 –11.44 –11.70 ± 0.04
4 Mg + 4 H2O ⇌ Mg4(OH)4 + 4 H –39.71
Mg(OH)2(cr) + 2 H ⇌ Mg + 2 H2O 16.84 16.84 17.11 ± 0.04

Manganese(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969 Baes and Mesmer, 1976 Nordstrom et al., 1990 Hummel et al., 2002 Brown and Ekberg, 2016
Mn + H2O ⇌ MnOH + H –10.59 –10.59 –10.59 –10.59 −10.58 ± 0.04
Mn + 2 H2O ⇌ Mn(OH)2 + 2 H –22.2 −22.18 ± 0.20
Mn + 3 H2O ⇌ Mn(OH)3 + 3 H –34.8 −34.34 ± 0.45
Mn + 4 H2O ⇌ Mn(OH)4 + 4 H –48.3 −48.28 ± 0.40
2 Mn + H2O ⇌ Mn2OH + H –10.56
2 Mn + 3 H2O ⇌ Mn2(OH)3 + 6 H –23.90
Mn(OH)2(s) + 2 H ⇌ Mn + 2 H2O 15.2 15.2 15.2 15.19 ± 0.10
MnO(s) + 2 H ⇌ Mn + H2O 17.94 ± 0.12

Manganese(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016
Mn + H2O ⇌ MnOH + H –11.70 ± 0.04

Mercury(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Hg2 + H2O ⇌ Hg2OH + H −5.0 −4.45 ± 0.10

() 0.5 M HClO4

Mercury(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Powell et all, 2005 Brown and Ekberg, 2016
Hg+ + H2O ⇌ HgOH+ + H −3.40 –3.40 ± 0.08 –3.40 ± 0.08
Hg + 2 H2O ⇌ Hg(OH)2 + 2 H -6.17 –5.98 ± 0.06 −5.96 ± 0.07
Hg + 3 H2O ⇌ Hg(OH)3 + 3 H –21.1 –21.1 ± 0.3
HgO(s) + 2 H ⇌ Hg + H2O 2.56 2.37 ± 0.08 2.37 ± 0.08

Molybdenum(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 () or 0.1 M Na medium, Data at I = 0 are not available ():

Reaction Baes and Mesmer, 1976 Jolivet, 2000 NIST46 Crea et al., 2017
MoO4 + H ⇌ HMoO4 3.89 4.24 4.47 ± 0.02
MoO4 + 2 H ⇌ H2MoO4 7.50 8.12 ± 0.03
HMoO4 + H ⇌ H2MoO4 4.0
Mo7O24 + H ⇌ HMo7O24 4.4
HMo7O24 + H ⇌ H2Mo7O24 3.5
H2Mo7O24 + H ⇌ H3Mo7O24 2.5
7 MoO4+ 8 H ⇌ Mo7O24 + 4 H2O 57.74 52.99 51.93 ± 0.04
7 MoO4 + 9 H ⇌ Mo7O23(OH) + 4 H2O 62.14 58.90 ± 0.02
7 MoO4 + 10 H ⇌ Mo7O22(OH)2 + 4 H2O 65.68 64.63 ± 0.05
7 MoO4 + 11 H ⇌ Mo7O21(OH)3 + 4 H2O 68.21 68.68 ± 0.06
19 MoO4 + 34 H ⇌ Mo19O59 + 17 H2O 196.3 196
MoO3(s) + H2O ⇌ MoO4 + 2 H –12.06

Neodymium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Neck et al., 2009 Brown and Ekberg, 2016
Nd + H2O ⇌ NdOH + H –8.0 –8.0 –7.4 ± 0.4 –8.13 ± 0.05
Nd + 2 H2O ⇌ Nd(OH)2 + 2 H (–16.9) –15.7 ± 0.7
Nd + 3 H2O ⇌ Nd(OH)3(aq) + 3 H (–26.5) –26.2 ± 0.5
Nd + 4 H2O ⇌ Nd(OH)4 + 4 H (–37.1) –37.4 –40.7 ± 0.7
2 Nd + 2 H2O ⇌ Nd2(OH)2 + 2 H –13.86 –13.9 –15.56 ± 0.20
3 Nd + 5 H2O ⇌ Nd3(OH)5 + 5 H < –28.5 –34.2 ± 0.3
Nd(OH)3(s) + 3 H ⇌ Nd + 3 H2O 18.6 17.2 ± 0.4 17.89 ± 0.09
Nd(OH)3(s) ⇌ Nd + 3 OH –23.2 ± 0.9 –21.5 (act)

–23.1(inact)

Neptunium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016 Grenthe et al, 2020
Np + H2O ⇌ NpOH + H -7.3 ± 0.5 –6.8 ± 0.3

Neptunium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Brown and Ekberg, 2016 Grenthe et al, 2020
Np + H2O ⇌ NpOH + H –1.49 –1.5 –1.31 ± 0.05 0.5 ± 0.2
Np + 2 H2O ⇌ Np(OH)2 + 2 H –3.7 ± 0.3 0.3 ± 0.3
Np + 4 H2O ⇌ Np(OH)4 + 4 H –10.0 ± 0.9 –8 ± 1
Np + 4 OH ⇌ NpO2(am, hyd) + 2 H2O 52 54.9 ± 0.4 57.5 ± 0.3 56.7 ± 0.5

Neptunium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016 Grenthe et al, 2020
NpO2 + + H2O ⇌ NpO2(OH) + H –8.85 –10.7 ± 0.5 –11.3 ± 0.7
NpO2 + 2 H2O ⇌ NpO2(OH)2 + 2 H –22.8 ± 0.7 –23.6 ± 0.5
NpO2 + H2O ⇌ NpO2(OH)(am, fresh) + H ≤ –4.7 –5.21 ± 0.05 –5.3 ± 0.2
NpO2 + H2O ⇌ NpO2(OH)(am, aged) + H –4.53 ± 0.06 –4.7 ± 0.5

Neptunium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976

NIST46 Brown and Ekberg,

2016

Grenthe et

al, 2020

NpO2 + H2O ⇌ NpO2(OH) + H –5.15 –5.12 –5.1 ± 0.2 –5.1 ± 0.4
NpO2 + 3 H2O ⇌ NpO2(OH)3 + 3 H –21 ± 1
NpO2 + 4 H2O ⇌ NpO2(OH)4 + 4 H –32 ± 1
2 NpO2 + 2 H2O ⇌ (NpO2)2(OH)2 + 2 H –6.39 –6.39 –6.2 ± 0.2 –6.2 ± 0.2
3 NpO2 + 5 H2O ⇌ (NpO2)3(OH)5 + 5 H –17.49 –17.49 –17.0 ± 0.2 –17.1 ± 0.2
NpO2 + 2 H2O ⇌ NpO3.H2O(cr) + 2 H ≥-6.6 –5.4 ± 0.4 –5.4 ± 0.4

Nickel(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Feitknecht and Schindler, 1963 Baes and Messmer, 1976 NIST46 Gamsjäger et al., 2005 Thoenen et al., 2014 Brown and Ekberg, 2016
Ni + H2O ⇌ NiOH + H –9.86 –9.9 –9.54 ± 0.14 –9.54 ± 0.14 –9.90 ± 0.03
Ni + 2 H2O ⇌ Ni(OH)2 + 2 H –19 –19 < –18 –21.15 ± 0.0
Ni + 3 H2O ⇌ Ni(OH)3 + 3 H –30 –30 –29.2 ± 1.7 –29.2 ± 1.7
Ni + 4 H2O ⇌ Ni(OH)4 + 4 H < –44
2 Ni + H2O ⇌ Ni2(OH) + H –10.7 –10.6 ± 1.0 –10.6 ± 1.0 –10.6 ± 1.0
4 Ni + 4 H2O ⇌ Ni4(OH)4 + 4 H –27.74 –27.7 –27.52 ± 0.15 –27.52 ± 0.15 –27.9 ± 0.6
β-Ni(OH)2(s) + 2 H ⇌ Ni + 2 H2O 10.8 11.02 ± 0.20 10.96 ± 0.20

11.75 ± 0.13 (microcr)

Ni(OH)2(s) ⇌ Ni + 2 OH –17.2 (inactive) –17.2 –16.97± 0.20 (β)

–17.2 ± 1.3 (cr)

Ni(OH)2(s) + OH ⇌ Ni(OH)3 –4.2 (inactive)
NiO(cr) + 2 H ⇌ Ni + H2O 12.38 ± 0.06 12.48 ± 0.15

Niobium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Filella and May, 2020
Nb(OH)5 + H ⇌ Nb(OH)4 + H2O ~ –0.6 1.603
Nb(OH)5 + H2O ⇌ Nb(OH)6 + H ~ –4.8 –4.951
Nb6O19 + H ⇌ HNb6O19 14.95
HNb6O19 + H ⇌ H2Nb6O19 13.23
H2Nb6O19 + H ⇌ H3Nb6O19 11.73
1/2 Nb2O5(act) + 5/2 H2O ⇌ Nb(OH)5 ~ –7.4
Nb(OH)5(am,s) ⇌ Nb(OH)5 –7.510
Nb2O5(s) + 5 H2O ⇌ 2 Nb(OH)5 –18.31

Osmium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution, I = 0.1 M and T = 298.15 K:

Reaction Galbács et al., 1983
OsO2(OH)4 + H ⇌ HOsO2(OH)4 10.4
HOsO2(OH)4 + H ⇌ H2OsO2(OH)4 8.5

Osmium(VIII)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Galbács et al., 1983
OsO2(OH)3(O)aq + H ⇌ OsO2(OH)4aq 12.2
OsO2(OH)2(O)2aq + H ⇌ OsO2(OH)3(O)aq 14.4

() At I = 0.1 M () At I = 2.5 M

Palladium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969 Hummel et al., 2002 Kitamura and Yul, 2010 Brown and Ekberg, 2016
Pd + H2O ⇌ PdOH + H −0.96 −0.65 ± 0.64 −1.16 ± 0.30
Pd + 2 H2O ⇌ Pd(OH)2 + 2 H −2.6 −4 ± 1 −3.11 ± 0.63 −3.07 ± 0.16
Pd + 3 H2O ⇌ Pd(OH)3 + 3 H −15.5 ± 1 −14.20 ± 0.63
Pd(OH)2(am) + 2 H ⇌ Pd + 2 H2O −3.3 ± 1 −3.4 ± 0.2

Plutonium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Brown and Ekberg, 2016 Grenthe et al, 2020
Pu + H2O ⇌ PuOH + H –7.0 –6.9 ± 0.2 –6.9 ± 0.3
Pu + 3 H2O ⇌ Pu(OH)3(cr) + 3 H –19.65 –15.8 ± 0.8 –15 ± 1

Plutonium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Brown and Ekberg, 2016 Grenthe et al, 2020
Pu + H2O ⇌ PuOH + H –0.5 –0.5 –0.7 ± 0.1 0.6 ± 0.2
Pu + 2 H2O ⇌ Pu(OH)2 + 2 H (–2.3) 0.6 ± 0.3
Pu + 3 H2O ⇌ Pu(OH)3 + 3 H (–5.3) –2.3 ± 0.4
Pu + 4 H2O ⇌ Pu(OH)4 + 4 H –9.5 –12.5 ± 0.7 –8.5 ± 0.5
Pu + 4 OH ⇌ PuO2(am, hyd) + 2 H2O 49.5 47.9 ± 0.4 (0w)

53.8 ± 0.5 (1w)

58.3 ± 0.5

Plutonium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Brown and Ekberg, 2016 Grenthe et al, 2020
PuO2 + H2O ⇌ PuO2(OH) + H –1.49 –1.5 –1.31 ± 0.05 0.5 ± 0.2
PuO2+ + H2O ⇌ PuO2(OH)(am) + H –3.7 ± 0.3 0.3 ± 0.3

Plutonium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976

NIST46 Brown and Ekberg,

2016

Grenthe et

al, 2020

PuO2 + H2O ⇌ PuO2(OH) + H –5.6 –5.6 –5.36 ± 0.09 –5.5 ± 0.5
PuO2 + 2 H2O ⇌ PuO2(OH)2 + 2 H –12.9 ± 0.2 –13 ± 1
PuO2 + 3 H2O ⇌ PuO2(OH)3 + 3 H+ –24 ± 1
2 PuO2 + 2 H2O ⇌ (PuO2)2(OH)2 + 2 H –8.36 –8.36 –7.8 ± 0.5 –7 ± 1
3 PuO2 + 5 H2O ⇌ (PuO2)3(OH)5 + 5 H –21.65 –21.65
PuO2 + 2 OH ⇌ PuO2(OH)2(am, hyd) 22.8 ± 0.6

Potassium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Nordstrom et al., 1990 Brown and Ekberg, 2016
K + H2O ⇌ KOH + H –14.46 –14.46 –14.5 ± 0.4

Praseodymium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Brown and Ekberg, 2016
Pr + H2O ⇌ PrOH + H –8.1 –8.30 ± 0.03
2 Pr + 2 H2O ⇌ Pr2(OH)2+ + 2 H –16.31 ± 0.20
3 Pr + 5 H2O ⇌ Pr3(OH)5 + 5 H –35.0 ± 0.3
Pr(OH)3(s) + 3 H ⇌ Pr + 3 H2O 19.5 18.57 ± 0.20
Pr(OH)3(s) ⇌ Pr + 3 OH –22.3 ± 1.0

Radium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Nordstrom et al., 1990
Ra + H2O ⇌ RaOH + H –13.49

Rhodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969 Baes and Mesmer, 1976 Brown and Ekberg
Rh + H2O ⇌ RhOH2 + H ‒3.43 ‒3.4 ‒3.09 ± 0.1
Rh(OH)3(c) + OH ⇌ Rh(OH)4 ‒3.9

Samarium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 NIST46 Brown and Ekberg
Sm + H2O ⇌ SmOH + H –7.9 –7.9 –7.84 ± 0.11
2 Sm + 2 H2O ⇌ Sm2(OH)2 + 2 H –14.75 ± 0.20
3 Sm + 5 H2O ⇌ Sm3(OH)5 + 5 H –33.9 ± 0.3
Sm(OH)3(s) + 3H ⇌ Sm + 3H2O 16.5 17.19 ± 0.30
Sm(OH)3(s) ⇌ Sm + 3 OH –23.9 ± 0.9 (am)

–25.9 (cr)

Scandium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Sc + H2O ⇌ ScOH + H –4.3 –4.16 ± 0.05
Sc + 2 H2O ⇌ Sc(OH)2 + 2 H –9.7 –9.71 ± 0.30
Sc + 3 H2O ⇌ Sc(OH)3 + 3 H –16.1 –16.08 ± 0.30
Sc + 4 H2O ⇌ Sc(OH)4+ 4 H –26 –26.7 ± 0.3
2 Sc + 2 H2O ⇌ Sc2(OH)2 + 2 H –6.0 –6.02 ± 0.10
3 Sc + 5 H2O ⇌ Sc3(OH)5 + 5 H –16.34 –16.33 ± 0.10
Sc(OH)3(s) + 3 H ⇌ Sc + 3 H2O 9.17 ± 0.30
ScO1.5(s) + 3 H ⇌ Sc + 1.5 H2O 5.53 ± 0.30
ScO(OH)(c) + 3 H ⇌ Sc + 2 H2O 9.4
Sc(OH)3(c) + OH ⇌ Sc(OH)4 –3.5 ± 0.2

Selenium(–II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Olin et al., 2015 Thoenen et al., 2014
H2Se(g) ⇌ H2Se(aq) –1.10 ± 0.01 –1.10 ± 0.01
H2Se ⇌ HSe + H –3.85 ± 0.05 –3.85 ± 0.05
HSe ⇌ Se + H –14.91 ± 0.20

Selenium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Olin et al., 2005 Thoenen et al., 2014
SeO3 + H ⇌ HSeO3 8.50 8.36 ± 0.23 8.36 ± 0.23
HSeO3 + H ⇌ H2SeO3 2.75 2.64 ± 0.14 2.64 ± 0.14

Selenium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Olin et al., 2005 Thoenen et al., 2014
SeO4 + H ⇌ HSeO4 1.360 1.75 ± 0.10 1.75 ± 0.10

Silicon

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Thoenen et al., 2014
Si(OH)4 ⇌ SiO(OH)3 + H –9.86 –9.81 ± 0.02
Si(OH)4 ⇌ SiO2(OH)2 + 2 H –22.92 –23.14 ± 0.09
4 Si(OH)4 ⇌ Si4O6(OH)6 + 2 H + 4 H2O –13.44
4 Si(OH)4 ⇌ Si4O8(OH)4 + 4 H + 4 H2O –35.80 –36.3 ± 0.2
SiO2(quartz) + 2 H2O ⇌ Si(OH)4 –4.0 –3.739 ± 0.087
SiO2(am) + 2 H2O ⇌ Si(OH)4 –2.714

Silver

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Ag + H2O ⇌ AgOH + H −12.0 −11.75 ± 0.14
Ag + 2 H2O ⇌ Ag(OH)2 + 2 H −24.0 −24.34 ± 0.14
0.5 Ag2O(am) + H ⇌ Ag + 0.5 H2O 6.29 6.27 ± 0.05

Sodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Nordstrom et al., 1990 Brown and Ekberg, 2016
Na + H2O ⇌ NaOH + H –14.18 –14.18 –14.4 ± 0.2

Strontium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Nordstrom et al., 1990 Brown and Ekberg, 2016
Sr + H2O ⇌ SrOH + H –13.29 –13.29 –13.15 ± 0.05

Tantalum

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Filella and May, 2019
Ta(OH)5 + H ⇌ Ta(OH)4 + H2O ~1 0.7007
Ta(OH)5 + H2O ⇌ Ta(OH)6 + H ~ –9.6
Ta6O19 + H ⇌ HTa6O19 16.35
HTa6O19 + H ⇌ H2Ta6O19 14.00
1/2 Ta2O5(act) + 5/2 H2O ⇌ Ta(OH)5 ~ –5.2
Ta(OH)5(s) ⇌ Ta(OH)5 –5.295
Ta2O5(s) + 5 H2O ⇌ 2 Ta(OH)5 –20.00

() The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(-II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Filella and May, 2019
Te + H ⇌ HTe 11.81
HTe + H ⇌ H2Te 2.476

() The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Filella and May, 2019
TeO3 + H ⇌ HTeO3 9.928
HTeO3 + H ⇌ H2TeO3 6.445
H2TeO3 ⇌ HTeO3 + H ‒2.68
H2TeO3 ⇌ TeO3 + 2 H ‒12.5
H2TeO3 + H ⇌ Te(OH)3 3.13 2.415
TeO2(s) + H2O ⇌ H2TeO3 ‒4.709

() The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Filella and May, 2019
TeO2(OH)4 + H ⇌ TeO(OH)5 10.83
TeO(OH)5 + H ⇌ Te(OH)6 7.68 7.696
TeO2(OH)4 + 2 H ⇌ Te(OH)6 18.68
TeO3(OH)3 + 3 H ⇌ Te(OH)6 34.3
2 Te(OH)6 ⇌ Te2O(OH)11 + H ‒6.929

() The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Terbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Tb + H2O ⇌ TbOH + H −7.9 −7.60 ± 0.09
2 Tb + 2 H2O ⇌ Tb2(OH)2 + 2 H −13.9 ± 0.2
3 Tb + 5 H2O ⇌ Tb3(OH)5 + 5 H −31.7 ± 0.3
Tb(OH)3(s) + 3 H ⇌ Tb + 3 H2O 16.5 16.33 ± 0.30

Thallium(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Tl + H2O ⇌ TlOH + H –13.21
Tl + OH ⇌ TlOH 0.64 ± 0.05
Tl + 2 OH ⇌ Tl(OH)2 –0.7 ± 0.7
⁠1/2⁠ Tl2O(s) + H ⇌ Tl + ⁠1/2⁠ H2O 13.55 ± 0.20

() The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Thallium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Tl + H2O ⇌ TlOH + H –0.62 –0.22 ± 0.19
Tl + 2 H2O ⇌ Tl(OH)2 + 2 H –1.57
Tl + 3 H2O ⇌ Tl(OH)3 + 3 H –3.3
Tl + 4 H2O ⇌ Tl(OH)4 + 4 H –15.0
⁠1/2⁠ Tl2O3(s) + 3 H ⇌ Tl + ⁠3/2⁠ H2O –3.90 –3.90 ± 0.10

() The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Thorium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976

Rand et

al., 2008

Thoenen et

al, 014

Brown and Ekberg,

2016

Th + H2O ⇌ ThOH + H –3.20 –2.5 ± 0.5 –2.5 ± 0.5 –2.5 ± 0.5
Th + 2 H2O ⇌ Th(OH)2 + 2 H –6.93 –6.2 ± 0.5 –6.2 ± 0.5 –6.2 ± 0.5
Th + 3 H2O ⇌ Th(OH)3 + 3 H < –11.7
Th + 4 H2O ⇌ Th(OH)4 + 4 H –15.9 –17.4 ± 0.7 –17.4 ± 0.7 –17.4 ± 0.7
2Th + 2 H2O ⇌ Th2(OH)2 + 2 H –6.14 –5.9 ± 0.5 –5.9 ± 0.5 –5.9 ± 0.5
2Th + 3 H2O ⇌ Th2(OH)3 + 3 H –6.8 ± 0.2 –6.8 ± 0.2 –6.8 ± 0.2
4Th + 8 H2O ⇌ Th4(OH)8 + 8 H –21.1 –20.4 ± 0.4 –20.4 ± 0.4 –20.4 ± 0.4
4Th + 12 H2O ⇌ Th4(OH)12 + 12 H –26.6 ± 0.2 –26.6 ± 0.2 –26.6 ± 0.2
6Th + 15 H2O(l) ⇌ Th6(OH)15 + 15 H –36.76 –36.8 ± 1.5 –36.8 ± 1.5 –36.8 ± 1.5
6Th + 14 H2O(l) ⇌ Th6(OH)14 + 14 H –36.8 ± 1.2 –36.8 ± 1.2 –36.8 ± 1.2
ThO2(c) + 4 H ⇌ Th + 2 H2O 6.3
ThO2(am) + 4 H ⇌ Th + 2 H2O 8.8 ± 1.0
ThO2(am,hyd,fresh) + 4 H ⇌ Th + 2 H2O 9.3 ± 0.9
ThO2(am,hyd,aged) + 4 H ⇌ Th + 2 H2O 8.5 ± 0.9
Th + 4 OH ⇌ ThO2(am,hyd,fresh) + 2 H2O 46.7 ± 0.9
Th + 4 OH ⇌ ThO2(am,hyd,aged) + 2 H2O 47.5 ± 0.9

Thulium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Tm + H2O ⇌ TmOH + H −7.7 −7.34 ± 0.09
2 Tm + 2 H2O ⇌ Tm2(OH)2 + 2 H −13.2 ± 0.2
3 Tm + 5 H2O ⇌ Tm3(OH)5 + 5 H −30.5 ± 0.3
Tm(OH)3(s) + 3 H ⇌ Tm + 3 H2O 15.0 15.56 ± 0.40

Tin(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Feitknecht, 1963 Baes and Mesmer, 1976 Hummel et al., 2002 NIST46 Cigala et al, 2012 Gamsjäger et al, 2012 Brown and Ekberg, 2016
Sn + H2O ⇌ SnOH + H –3.40 –3.8 ± 0.2 –3.4 –3.52 ± 0.05 –3.53 ± 0.40 –3.53 ± 0.40
Sn + 2 H2O ⇌ Sn(OH)2 + 2 H –7.06 –7.7 ± 0.2 –7.1 –6.26 ± 0.06 –7.68 ± 0.40 –7.68 ± 0.40
Sn + 3 H2O ⇌ Sn(OH)3 + 3 H –16.61 –17.5 ± 0.2 –16.6 –16.97 ± 0.17 –17.00 ± 0.60 –17.56 ± 0.40
2 Sn + 2 H2O ⇌ Sn2(OH)2 + 2 H –4.77 –4.8 –4.79 ± 0.05
3 Sn + 4 H2O ⇌ Sn3(OH)4 + 4 H –6.88 –5.6 ± 1.6 –6.88 –5.88 ± 0.05 –5.60 ± 0.47 −5.60 ± 0.47
Sn(OH)2(s) ⇌ Sn + 2 OH –25.8 –26.28 ± 0.08
SnO(s) + 2 H ⇌ Sn + H2O 1.76 2.5± 0.5 1.60 ± 0.15
SnO(s) + H2O ⇌ Sn + 2 OH –26.2
SnO(s) + H2O ⇌ Sn(OH)2 –5.3
SnO(s) + 2 H2O ⇌ Sn(OH)3 + H –0.9

Tin(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Hummel et al., 2002 Gamsjäger et al, 2012 Brown and Ekberg, 2016
Sn + 4 H2O ⇌ Sn(OH)4 + 4 H 7.53 ± 0.12
Sn + 5 H2O ⇌ Sn(OH)5 + 5 H –1.07 ± 0.42
Sn + 6 H2O ⇌ Sn(OH)6 + 6 H –1.07 ± 0.42
Sn(OH)4 + H2O ⇌ Sn(OH)5 + H –8.0 ± 0.3 –8.60 ± 0.40
Sn(OH)4 + 2 H2O ⇌ Sn(OH)6 + 2 H –18.4 ± 0.3 –18.67 ± 0.30
SnO2(cr) + 2 H2O ⇌ Sn(OH)4 –8.0 ± 0.2 –8.06 ± 0.11
SnO2(am) + 2 H2O ⇌ Sn(OH)4 –7.3 ± 0.3 –7.22 ± 0.08
SnO2(s) + 4 H ⇌ Sn + 2 H2O –15.59 ± 0.04

Tungsten

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction NIST46
WO4 + H ⇌ HWO4 3.6
WO4 + 2 H ⇌ H2WO4 5.8
6 WO4 + 7 H ⇌ HW6O21 + 3 H2O 63.83

Titanium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Perrin et al., 1969 Baes and Mesmer, 1976 Brown and Ekberg, 2016
Ti + H2O ⇌ TiOH + H –1.29 –2.2 –1.65 ± 0.11
2 Ti + 2 H2O ⇌ Ti2(OH)2 + 2 H –3.6 –2.64 ± 0.10

Titanium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Ti(OH)2 + H2O ⇌ Ti(OH) + H ⩽–2.3
Ti(OH)2 + 2 H2O ⇌ Ti(OH)4 + 2 H –4.8
TiO + H2O ⇌ TiOOH + H –2.48 ± 0.10
TiO + 2 H2O ⇌ TiO(OH)2 + 2 H –5.49 ± 0.14
TiO + 3 H2O ⇌ TiO(OH)3 + 3 H –17.4 ± 0.5
TiO(OH)2 + H2O ⇌ TiO(OH)3 + H –11.9 ±0.5
TiO2(c) +2 H2O ⇌ Ti(OH)4 ~ –4.8
TiO2(s) + H ⇌ TiOOH –6.06 ± 0.30
TiO2(s) + H2O ⇌ TiO(OH)2 –9.02 ± 0.02
TiO2 x H2O ⇌ Ti(OH)2
TiO2(s) + 4 H ⇌ Ti + 2 H2O –3.56 ± 0.10

Uranium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976

Thoenen et

al., 2014

Brown and Ekberg,

2016

Grenthe et al.,

2020

U + H2O ⇌ UOH + H –0.65 – 0.54 ± 0.06 –0.58 ± 0.08 – 0.54 ± 0.06
U + 2 H2O ⇌ U(OH)2 + 2 H (–2.6) –1.1 ± 1.0 –1.4 ± 0.2 –1.9 ± 0.2
U + 3 H2O ⇌ U(OH)3 + 3 H (–5.8) –4.7 ± 1.0 –5.1 ± 0.3 –5.2 ± 0.4
U + 4 H2O ⇌ U(OH)4 + 4 H (–10.3) –10.0 ± 1.4 –10.4 ± 0.5 –10.0 ± 1.4
U + 5 H2O ⇌ U(OH)5 + 5 H –16.0
UO2(am, hyd) + 4 H ⇌ U + 2 H2O 1.5 ± 1.0
UO2(am,hyd) + 2 H2O ⇌ U + 4 OH –54.500 ± 1.000 –54.500 ± 1.000
UO2(c) + 4 H ⇌ U + 2 H2O –1.8
UO2(c) + 2 H2O ⇌ U + 4 OH –60.860 ± 1.000

Uranium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer,

1976

Grenthe et

al., 1992

NIST46 Brown and Ekberg,

2016

Grenthe et al.,

2020

UO2 + H2O ⇌ UO2(OH) + H –5.8 –5.2 ± 0.3 –5.9 ± 0.1 –5.13 ± 0.04 –5.25 ± 0.24
UO2 + 2 H2O ⇌ UO2(OH)2 + 2 H ≤-10.3 –12.15 ± 0.20 –12.15 ± 0.07
UO2 + 3 H2O ⇌ UO2(OH)3 + 3 H –19.2 ± 0.4 –20.25 ± 0.42 –20.25 ± 0.42
UO2 + 4 H2O ⇌ UO2(OH)4 + 4 H –33 ± 2 –32.40 ± 0.68 –32.40 ± 0.68
2 UO2 + 2 H2O ⇌ (UO2)2(OH)2 + 2 H –5.62 –5.62 ± 0.04 –5.58 ± 0.04 –5.68 ± 0.05 –5.62 ± 0.08
3 UO2 + 5 H2O ⇌ (UO2)3(OH)5 + 5 H+ –15.63 –15.55 ± 0.12 –15.6 –15.75 ± 0.12 –15.55 ± 0.12
3 UO2 + 4 H2O ⇌ (UO2)3(OH)4 + 4 H (–11.75) –11.9 ± 0.3 –11.78 ± 0.05 –11.9 ± 0.3
3 UO2 + 7 H2O ⇌ (UO2)3(OH)7 + 7 H –31 ± 2.0 –32.2 ± 0.8 –32.2 ± 0.8
4 UO2 + 7 H2O ⇌ (UO2)4(OH)7+ + 7 H –21.9 ± 1.0 –22.1 ± 0.2 –21.9 ± 1.0
2 UO2 + H2O ⇌ (UO2)2(OH) + H –2.7 ± 1.0 –2.7 ± 1.0
UO2(OH)2(s) + 2H ⇌ UO2 + 2 H2O 5.6 6.0 4.81 ± 0.20
UO3·2H2O(cr) + 2H ⇌ UO2 + 3 H2O 5.350 ± 0.130

Vanadium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Brown and Ekberg, 2016
VO + H2O ⇌ VO(OH) + H –5.30 ± 0.13
2 VO + 2 H2O ⇌ (VO)2(OH)2 + 2 H –6.71 ± 0.10

Vanadium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
VO2 + 2 H2O ⇌ VO(OH)3 + H –3.3
VO2 + 2 H2O ⇌ VO2(OH)2 + 2 H –7.3 –7.18 ± 0.12
10 VO2 + 8 H2O ⇌ V10O26(OH)2 + 14 H –10.7
VO2(OH)2 ⇌ VO3(OH) + H –8.55
2 VO2(OH)2 ⇌ V2O6(OH)2 + H + H2O –6.53
VO3(OH) ⇌ VO4 + H –14.26
2 VO3(OH) ⇌ V2O7 + H2O 0.56
3 VO3(OH) + 3 H⇌ V3O9 + 3 H2O 31.81
V10O26(OH)2 ⇌ V10O27(OH) + 3 H –3.6
V10O27(OH) ⇌ V10O28 + H –6.15
VO2 + H2O ⇌ VO2OH + H –3.25 ± 0.1
VO2 + 3 H2O ⇌ VO2(OH)3 + 3 H –15.74 ± 0.19
VO2 + 4 H2O ⇌ VO2(OH)4 + 4 H –30.03 ± 0.24
2 VO2 + 4 H2O ⇌ (VO2)2(OH)4 + 4 H –11.66 ± 0.53
2 VO2 + 5 H2O ⇌ (VO2)2(OH)5 + 5 H –20.91 ± 0.22
2 VO2 + 6 H2O ⇌ (VO2)2(OH)6 + 6 H –32.43 ± 0.30
4 VO2 + 8 H2O ⇌ (VO2)4(OH)8 + 8 H –20.78 ± 0.33
4 VO2 + 9 H2O ⇌ (VO2)4(OH)9 + 9 H –31.85 ± 0.26
4 VO2 + 10 H2O ⇌ (VO2)4(OH)10 + 10 H –45.85 ± 0.26
5 VO2 + 10 H2O ⇌ (VO2)5(OH)10 + 10 H –27.02 ± 0.34
10 VO2 + 14 H2O ⇌ (VO2)10(OH)14 + 14 H –10.5 ± 0.3
10 VO2 + 15 H2O ⇌ (VO2)10(OH)15 + 15 H –15.73 ± 0.33
10 VO2 + 16 H2O ⇌ (VO2)10(OH)16 + 16 H –23.90 ± 0.35
⁠1/2⁠ V2O5(c) + H ⇌ VO2 + ⁠1/2⁠ H2O –0.66
V2O5(s) + 2 H ⇌ 2 VO2 + H2O –0.64 ± 0.09

Ytterbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Yb + H2O ⇌ YbOH + H −7.7 −7.31 ± 0.18
Yb + 2 H2O ⇌ Yb(OH)2 + 2 H (−15.8)
Yb + 3 H2O ⇌ Yb(OH)3 + 3 H (−24.1)
Yb + 4 H2O ⇌ Yb(OH)4 + 4 H −32.7
2 Yb + 2 H2O ⇌ Yb2(OH)2 + 2 H −13.76 ± 0.20
3 Yb + 5 H2O ⇌ Yb3(OH)5 + 5 H −30.6 ± 0.3
Yb(OH)3(s) + 3 H ⇌ Yb + 3 H2O 14.7 15.35 ± 0.20

Yttrium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Brown and Ekberg, 2016
Y + H2O ⇌ YOH + H –7.7 –7.77 ± 0.06
Y + 2 H2O ⇌ Y(OH)2 + 2 H (–16.4)
Y + 3 H2O ⇌ Y(OH)3 + 3 H (–26.0)
Y + 4 H2O ⇌ Y(OH)4+ 4 H –36.5
2 Y + 2 H2O ⇌ Y2(OH)2 + 2 H –14.23 –14.1 ± 0.2
3 Y + 5 H2O ⇌ Y3(OH)5 + 5 H –31.6 –32.7 ± 0.3
Y(OH)3(s) + 3 H ⇌ Y + 3 H2O 17.5 17.32 ± 0.30

Zinc

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Powell and Brown, 2013 Brown and Ekberg, 2016
Zn + H2O ⇌ ZnOH + H −8.96 −8.96 ± 0.05 −8.94 ± 0.06
Zn + 2 H2O ⇌ Zn(OH)2 + 2 H −16.9 –17.82 ± 0.08 −17.89 ± 0.15
Zn + 3 H2O ⇌ Zn(OH)3 + 3 H −28.4 –28.05 ± 0.05 −27.98 ± 0.10
Zn + 4 H2O ⇌ Zn(OH)4 + 4 H −41.2 –40.41 ± 0.12 −40.35 ± 0.22
2 Zn + H2O ⇌ Zn2OH + H −9.0 –7.9 ± 0.2 −7.89 ± 0.31
2 Zn + 6 H2O ⇌ Zn2(OH)6 + 6 H −57.8
ZnO(s) + 2 H ⇌ Zn + H2O 11.14 11.12 ± 0.05 11.11 ± 0.10
ε-Zn(OH)2(s) + 2 H ⇌ Zn + 2 H2O 11.38 ± 0.20 11.38± 0.20
β1-Zn(OH)2(s) + 2 H ⇌ Zn + 2 H2O 11.72 ± 0.04
β2-Zn(OH)2(s) + 2 H ⇌ Zn+ + 2 H2O 11.76 ± 0.04
γ-Zn(OH)2(s) + 2 H ⇌ Zn + 2 H2O 11.70 ± 0.04
δ-Zn(OH)2(s) + 2 H ⇌ Zn + 2 H2O 11.81 ± 0.04

Zirconium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

Reaction Baes and Mesmer, 1976 Thoenen et al., 2014 Brown and Ekberg, 2016
Zr + H2O ⇌ ZrOH + H 0.32 0.32 ± 0.22 0.12 ± 0.12
Zr + 2 H2O ⇌ Zr(OH)2 + 2 H (−1.7)* 0.98 ± 1.06* −0.18 ± 0.17*
Zr + 3 H2O ⇌ Zr(OH)3 + 3 H (−5.1)
Zr + 4 H2O ⇌ Zr(OH)4 + 4 H –9.7* –2.19 ± 0.70* −4.53 ± 0.37*
Zr + 5 H2O ⇌ Zr(OH)5 + 5 H –16.0
Zr + 6 H2O ⇌ Zr(OH)6 + 6 H –29± 0.70 –30.5 ± 0.3
3 Zr + 4 H2O ⇌ Zr3(OH)4 + 4 H –0.6 0.4 ± 0.3 0.90 ± 0.18
3 Zr + 5 H2O ⇌ Zr3(OH)5 + 5 H 3.70
3 Zr + 9 H2O ⇌ Zr3(OH)9 + 9 H 12.19 ± 0.20 12.19 ± 0.20
4 Zr + 8 H2O ⇌ Zr4(OH)8 + 8 H 6.0 6.52 ± 0.05 6.52 ± 0.05
4 Zr + 15 H2O ⇌ Zr4(OH)15 + 15 H 12.58± 0.24
4 Zr + 16 H2O ⇌ Zr4(OH)16 + 16 H 8.39± 0.80
ZrO2(s) + 4 H ⇌ Zr + 2 H2O –1.9* –5.37 ± 0.42*
ZrO2(s, baddeleyite) + 4 H ⇌ Zr + 2 H2O –7 ± 1.6
ZrO2(am) + 4 H ⇌ Zr + 2 H2O –3.24± 0.10 –2.97 ± 0.18

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.

References

  1. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 121.
  2. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 757–797.
  3. Hummel, W.; Thoenen, T. (2023). Technical Report 21-03. The PSI Chemical Thermodynamic Database 2020. Wettingen: NAGRA. pp. 252–259.
  4. ^ NIST46. NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0.{{cite book}}: CS1 maint: numeric names: authors list (link)
  5. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 407–414.
  6. ^ Grenthe, I.; Gaona, X.; Plyasunov, A.V.; Rao, L.; Runde, W.H.; Grambow, B.; Konings, R.J.M.; Smith, A.L.; Moore, E.E. (2020). Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium (PDF). Paris: OECD Publishing.
  7. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 414.
  8. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 375.
  9. ^ Lothenbach, B.; Ochs, M.; Wanner, H.; Yui, M. (1999). Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. TN8400 99-011. Japan Nuclear Cycle Development Institute (JNC).
  10. ^ Kitamura, A.; Fujiwara, K.; Doi, R.; Yoshida, Y.; Mihara, M.; Terashima, M.; Yui, M. (2010). JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level Radioactive and TRU-Wastes. Report JAEA-Data/Code 2009-024. Japan Atomic Energy Agency.
  11. Filella, M.; May, P.M. (2003). "Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters". Geochim. Cosmochim. Acta. 67: 4013–4031. doi:10.1016/S0016-7037(03)00095-4.
  12. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 370.
  13. ^ Nordstrom, D.K.; Archer, D. (2003). Welch, AH; Stollenwerk, KG (eds.). Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. Amsterdam: Kluwer Academic Publishers. pp. 1‒25. doi:10.1007/0-306-47956-7_1.
  14. ^ Nordstrom, D.K.; Majzlan, J.; Königsberger, E. (2014). "Thermodynamic properties for As minerals & aqueous species". Reviews in Mineralogy & Geochemistry. 79: 217‒255. doi:10.2138/rmg.2014.79.4.
  15. Khodakovsky, I.L.; Ryzhenko, B.N.; Naumov, G.B. (1968). "Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution)". Geokhimiya. 12: 1486‒ 1503, 1968.
  16. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 103.
  17. ^ Nordstrom, D.K.; Plummer, L.N.; Langmuir, D.; Busenberg, E.; May, H.M.; Jones, B.F.; Parkhurst, D.L. (1990). Melchior, D.C.; Basset, R.L. (eds.). Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II. Washington, DC: ACS. pp. 398–446.
  18. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. New York: Wiley. pp. 213–217.
  19. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 419–422.
  20. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 95.
  21. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 383.
  22. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 874–884.
  23. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 111.
  24. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 301.
  25. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2011). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd + OH, Cl, CO3, SO4, and PO4 systems (IUPAC Technical Report)". Pure Appl. Chem. 83: 1163–1214. doi:10.1351/PAC-REP-10-08-09.
  26. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 730–738.
  27. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 195–210.
  28. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  29. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
  30. ^ Ball, J.W.; Nordstrom, D.K. (1998). "Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides and hydroxides". J. Chem. Eng. Data. 43: 895–918.
  31. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 220.
  32. Rai, D.; Sass, B.M.; Moore, D.A. (1987). "Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide". Inorg. Chem. 26: 345–349.
  33. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 541–555.
  34. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 216.
  35. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 241.
  36. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 620–628.
  37. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 628−632.
  38. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 650–702.
  39. Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 274.
  40. Plyasunova, N.V.; Wang, M.; Zhang, Y.; Muhammed, M. (1997). "Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu at 298.15 K". Hydrometalurgy. 45: 37–51.
  41. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanne, H. "Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu + OH, Cl, CO3, SO4, and PO4 systems". Pure Appl. Chem. 79: 895–950 – via 2007.
  42. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 415−420.
  43. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 290−292.
  44. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 295−297.
  45. ^ Hummel, W.; Berner, U.; Curti, E.; Pearson, F.J.; Thoenen, T. (2002). TECHNICAL REPORT 02-16. Nagra/ PSI Chemical Thermodynamic Data Base 01/01.
  46. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 284–287.
  47. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 319.
  48. Smith, R.M.; Martell, A.E.; Motekaitis, R.J. (2003). NIST Critically Selected Stability Constants of Metal Complexes Database, Version 7.0, NIST Standard Reference Database 46. Gaithersburg, MD, USA: National Institute of Standards, U.S. Dept. of Commerce.
  49. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 797–812.
  50. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 349.
  51. Wood, S.A.; Samson, I.M. (2006). "The aqueous geochemistry of gallium, germanium, indium and scandium". Ore Geol. Rev. 28 – via 57–102.
  52. Filella, M.; May, P.M. (2023). "The aqueous solution chemistry of germanium under conditions of environmental and biological interest: inorganic ligands". Applied Geochemistry. 155: 105631.
  53. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 279–285.
  54. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 158.
  55. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 460–463.
  56. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 293−295.
  57. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 327.
  58. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 812–817.
  59. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 736‒739.
  60. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 235.
  61. ^ Lemire, R.J.; Berner, U.; Musikas, C.; Palmer, D.A.; Taylor, P.; Tochiyama, O. (2013). Chemical Thermodynamics of Iron, Part 1. Chemical Thermodynamics. Vol. 13a. OECD Nuclear Energy Agency (NEA).
  62. Brown, P.I.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 573−585.
  63. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 585–620.
  64. Baer, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  65. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 365.
  66. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.K.; Sjöberg, S.; Wanner, H. (2009). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb + OH, Cl, CO3, SO4, and PO4 systems (IUPAC Technical Report)". Pure Appl. Chem. 81: 2425–2476. doi:10.1351/PAC-REP-09-03-05.
  67. Cataldo, S.; Lando, G.; Milea, D.; Orecchio, S.; Pettignano, A.; Sammartano, S. (2018). "A novel thermodynamic approach for the complexation study of toxic metal cations by a landfill leachate". New J. Chem. 42: 7640–7648. doi:10.1039/C7NJ04456A. hdl:10447/326779.
  68. ^ Feitknecht, W.; Schindler, P. (1963). "Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution". Pure and Applied Chemistry. 6 (2): 125–206. doi:10.1351/pac196306020125.
  69. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 86.
  70. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 136–141.
  71. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 89.
  72. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 178–195.
  73. Perrin, D.D (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 181.
  74. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 226.
  75. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 557−561.
  76. ^ Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 568–570.
  77. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 302.
  78. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 741–755.
  79. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 312.
  80. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanner, H. (2005). "Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg– Cl, OH, CO3, SO4, and PO4 aqueous systems (IUPAC technical report)". Pure Appl. Chem. 77: 739–80. doi:10.1515/iupac.77.0018.
  81. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 256.
  82. Jolivet, J.-P. (2000). "Metal Oxide Chemistry and Synthesis". Solution to Solid State. Wiley.
  83. Crea, F.; De Stefano, C.; Irto, A.; Milea, D.; Pettignano, A.; Sammartano, S. (2017). "Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations". Journal of Molecular Liquids. 229: 15–26. doi:10.1016/j.molliq.2016.12.041.
  84. Neck, V.; Altmaier, M.; Rabung, T.; Lützenkirchen, J.; Fanghänel, T. (2009). "Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes". Pure Appl. Chem. 81: 1555–1568. doi:10.1351/PAC-CON-08-09-05.
  85. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 380.
  86. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 183.
  87. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 380–384.
  88. Brownº, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 384–394.
  89. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 183–184.
  90. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 394–396.
  91. Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 246.
  92. Gamsjäger, H.; Bugajski, J.; Gajda, T.; Lemire, R.J.; Prei, W. (2005). Chemical Thermodynamics of Nickel, Chemical Thermodynamics, Volume 6. Paris: OECD.
  93. ^ Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen PSI, Switzerland: Paul Scherrer Institut. pp. 205–212.
  94. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 632–649.
  95. Filella, M.; May, P.M. (2020). "The aqueous solution thermodynamics of niobium under conditions of environmental and biological interest". Applied Geochemistry. 122. doi:10.1016/j.apgeochem.2020.104729.
  96. ^ Galbács, Z.M.; Zsednai, Á.; Csányi, L.J. (1983). "The acidic behaviour of osmium(VIII) and osmium(VI". Transition Met. Chem. 8: 328–332. doi:10.1007/BF00618563.
  97. Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 186.
  98. Kitamura, A.; Yui, M. (2010). "Reevaluation of thermodynamic data for hydroxide and hydrolysis species of palladium(II) using the Brønsted-Guggenheim Scatchard model". J. Nuclear Sci. Technol. 47: 760−770. doi:10.1080/18811248.2010.9711652.
  99. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 723−725.
  100. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 186–187.
  101. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 396–397.
  102. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 187–189.
  103. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 397–401.
  104. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 189–190.
  105. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 401–403.
  106. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 190–191.
  107. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 403–405.
  108. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 148–150.
  109. Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 191.
  110. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 263.
  111. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 722.
  112. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 128.
  113. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 225–236.
  114. ^ Olin, Å; Noläng, B.; Öhman, L.-O.; Osadchii, E; Rosén, E. (2005). Chemical Thermodynamics of Selenium. OECD Pub.
  115. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 386.
  116. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 387.
  117. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 342.
  118. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 278.
  119. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 725−730.
  120. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 142–147.
  121. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 210–213.
  122. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 252.
  123. Filella, M.; May, P.M. (2019). "The aqueous solution thermodynamics of tantalum under conditions of environmental and biological interest". Applied Geochemistry. 109: 104402. doi:10.1016/j.apgeochem.2019.104402.
  124. ^ Filella, M.; May, P.M. (2019). "The aqueous chemistry of tellurium: critically-selected equilibrium constants for the low-molecular-weight inorganic species". Environ. Chem. 16: 289–295. doi:10.1071/EN19017.
  125. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 395.
  126. Brwon, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 287−290.
  127. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 335.
  128. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 817–826.
  129. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 168.
  130. Rand, M.; Fuger, J.; Grenthe, I.; Neck, V.; Rai, D. (2008). Chemical Thermodynamics of Thorium (PDF). OECD Publishing.
  131. Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen: Paul Scherrer Institut PSI. pp. 259–263.
  132. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 462–498.
  133. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 297−300.
  134. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 357.
  135. Cigala, R.M.; Crea, F.; De Stefan, C.; Lando, G.; Milea, D.; Sammartano, S. (2012). "The inorganic speciation of tin(II) in aqueous solution". Geochim. Cosmochim. Acta. 87: 1–20. doi:10.1016/j.gca.2012.03.029.
  136. ^ Gamsjäger, H.; Gajda, T.; Sangster, J.; Saxena, S.K.; Voigt, W. (2012). Chemical Thermodynamics of Tin. Chemical Thermodynamics Volume 12. Paris: OECD.
  137. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 836–842.
  138. Perrin, D.D. (1969). Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 208.
  139. ^ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 151.
  140. ^ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 433–442.
  141. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 181.
  142. Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07 (PDF). Villigen: Paul Scherrer Institut PSI.
  143. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley (published 336–349).
  144. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 182.
  145. Grenthe, I.; Fuger, J.; Konings, R.J.M.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung, C.; Wanner, H. (1992). Chemical Thermodynamics of Uranium, Chemical Vol 1, (PDF). Paris: OECD Publishing.
  146. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 350–379.
  147. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 209.
  148. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 517–541.
  149. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 300−303.
  150. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 293.
  151. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2013). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn + OH, Cl, CO3, SO4, and PO4 systems (IUPAC Technical Report)*". Pure and Applied Chemistry. 85: 2249–2311.
  152. Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 676−700.
  153. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 442–460.
Category: