Misplaced Pages

IS-IS

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Intermediate system to intermediate system) Computer network routing protocol This article is about a computer network protocol. For topics with similar names, see Isis (disambiguation).
OSI model
by layer
7.  Application layer
6.  Presentation layer
5.  Session layer
4.  Transport layer
3.  Network layer
2.  Data link layer
1.  Physical layer
Internet history timeline

Early research and development:

Merging the networks and creating the Internet:

Commercialization, privatization, broader access leads to the modern Internet:

Examples of Internet services:

Intermediate System to Intermediate System (IS-IS, also written ISIS) is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet switching network.

The IS-IS protocol is defined in ISO/IEC 10589:2002 as an international standard within the Open Systems Interconnection (OSI) reference design.

In 2005, IS-IS was called "the de facto standard for large service provider network backbones".

Description

IS-IS is an interior gateway protocol, designed for use within an administrative domain or network. This is in contrast to exterior gateway protocols, primarily Border Gateway Protocol (BGP), which is used for routing between autonomous systems.

IS-IS is a link-state routing protocol, operating by reliably flooding link state information throughout a network of routers. Each IS-IS router independently builds a database of the network's topology, aggregating the flooded network information. Like the OSPF protocol, IS-IS uses Dijkstra's algorithm for computing the best path through the network. Packets (datagrams) are then forwarded, based on the computed ideal path, through the network to the destination.

History

The IS-IS protocol was developed by a team of people working at Digital Equipment Corporation as part of DECnet Phase V.

The Internet Engineering Task Force (IETF) published IS-IS in 1990, but that RFC was later retracted and marked as historic because it republished a draft rather than a final version of the International Organization for Standardization (ISO) standard, causing confusion.

The protocol was standardized by ISO in 1992 as ISO 10589, for communication between network devices that are termed Intermediate Systems (as opposed to end systems or hosts) by the ISO. The purpose of IS-IS was to make the routing of datagrams possible using the ISO-developed OSI protocol stack called Connectionless-mode Network Service (CLNS). IS-IS was developed at roughly the same time that the Internet Engineering Task Force IETF was developing a similar protocol called OSPF. IS-IS was later extended to support routing of datagrams in the Internet Protocol (IP), the network-layer protocol of the global Internet. This version of the IS-IS routing protocol was then called Integrated IS-IS.

Packet types

IS-IS adjacency can be either broadcast or point-to-point.

IS-IS Hello PDU (IIH)
The IS-IS hello packets needs to be exchanged periodically between 2 routers to establish adjacency. Based on the negotiation, one of them will be selected as DIS (Designated IS). This hello packet will be sent separately for Level-1 or Level-2.
Link State PDU (LSP)
This contains the actual route information. This LSP can contain many type–length–values (TLVs).
Complete Sequence Number PDU (CSNP)
This packet will be sent only by the DIS. By default for every 10 seconds, CSNP packet will be transmitted by DIS. This will contain the list of LSP IDs along with sequence number and checksum.
Partial Sequence Number PDU (PSNP)
If the router which receives CSNP packet finds some discrepancy in its own database, it will send an PSNP request asking the DIS to send specific LSP back to it.

Other uses

IS-IS is also used as the control plane for IEEE 802.1aq Shortest Path Bridging (SPB). SPB allows for shortest-path forwarding in an Ethernet mesh network context utilizing multiple equal cost paths. This permits SPB to support large Layer 2 topologies, with fast convergence, and improved use of the mesh topology. Combined with this is single point provisioning for logical connectivity membership. IS-IS is therefore augmented with a small number of TLVs and sub-TLVs, and supports two Ethernet encapsulating data paths, 802.1ad Provider Bridges and 802.1ah Provider Backbone Bridges. SPB requires no state machine or other substantive changes to IS-IS, and simply requires a new Network Layer Protocol Identifier (NLPID) and set of TLVs. This extension to IS-IS is defined in the IETF proposed standard RFC 6329.

Related protocols

References

  1. "X.225 : Information technology – Open Systems Interconnection – Connection-oriented Session protocol: Protocol specification". Archived from the original on 1 February 2021. Retrieved 10 March 2023.
  2. "ISO/IEC 10589:2002 – Information technology – Telecommunications and information exchange between systems – Intermediate System to Intermediate System intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO 8473)". ISO website. International Organization for Standardization (ISO). November 2002. Retrieved May 24, 2017.
  3. "Free-of-charge PDF copy of ISO/IEC 10589:2002". ISO website. International Organization for Standardization. Retrieved May 24, 2017.
  4. Gredler, Hannes; Goraiski, Walter (2005). The complete IS-IS routing protocol. Springer. p. 1. ISBN 1-85233-822-9.
  5. J. Hawkinson; T. Bates (March 1996). Guidelines for creation, selection, and registration of an Autonomous System (AS). Network Working Group. doi:10.17487/RFC1930. BCP 6. RFC 1930. Best Current Practice 6. Updated by RFC 6996 and 7300.
  6. D. Oran, ed. (February 1990). OSI IS-IS Intra-domain Routing Protocol. Network Working Group. doi:10.17487/RFC1142. RFC 1142. Historic. Obsoleted by RFC 7142.
  7. M. Shand; L. Ginsberg (February 2014). Reclassification of RFC 1142 to Historic. Internet Engineering Task Force. doi:10.17487/RFC7142. ISSN 2070-1721. RFC 7142. Informational. Obsoletes RFC 1142.
  8. R. Callon (December 1990). Use of OSI IS-IS for Routing in TCP/IP and Dual Environments. Network Working Group. doi:10.17487/RFC1195. RFC 1195. Proposed Standard. Updated by RFC 1349, 5304 and 5302.
  9. D. Allan; N. Bragg; P. Unbehagen (April 2011). D. Fedyk; P. Ashwood-Smith (eds.). IS-IS Extensions Supporting IEEE 802.1aq Shortest Path Bridging. Internet Engineering Task Force. doi:10.17487/RFC6329. ISSN 2070-1721. RFC 6329. Proposed Standard.

External links

Categories: