Misplaced Pages

Iwasawa group

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article may be confusing or unclear to readers. Please help clarify the article. There might be a discussion about this on the talk page. (April 2015) (Learn how and when to remove this message)

In mathematics, a group is called an Iwasawa group, M-group or modular group if its lattice of subgroups is modular. Alternatively, a group G is called an Iwasawa group when every subgroup of G is permutable in G (Ballester-Bolinches, Esteban-Romero & Asaad 2010, pp. 24–25).

Kenkichi Iwasawa (1941) proved that a p-group G is an Iwasawa group if and only if one of the following cases happens:

In Berkovich & Janko (2008, p. 257), Iwasawa's proof was deemed to have essential gaps, which were filled by Franco Napolitani and Zvonimir Janko. Roland Schmidt (1994) has provided an alternative proof along different lines in his textbook. As part of Schmidt's proof, he proves that a finite p-group is a modular group if and only if every subgroup is permutable, by (Schmidt 1994, Lemma 2.3.2, p. 55).

Every subgroup of a finite p-group is subnormal, and those finite groups in which subnormality and permutability coincide are called PT-groups. In other words, a finite p-group is an Iwasawa group if and only if it is a PT-group.

Examples

The Iwasawa group of order 16 is isomorphic to the modular maximal-cyclic group of order 16.

See also

Further reading

Both finite and infinite M-groups are presented in textbook form in Schmidt (1994, Ch. 2). Modern study includes Zimmermann (1989).

References


Stub icon

This group theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: