Misplaced Pages

Jackson q-Bessel function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Jackson–Bessel function)

In mathematics, a Jackson q-Bessel function (or basic Bessel function) is one of the three q-analogs of the Bessel function introduced by Jackson (1906a, 1906b, 1905a, 1905b). The third Jackson q-Bessel function is the same as the Hahn–Exton q-Bessel function.

Definition

The three Jackson q-Bessel functions are given in terms of the q-Pochhammer symbol and the basic hypergeometric function ϕ {\displaystyle \phi } by

J ν ( 1 ) ( x ; q ) = ( q ν + 1 ; q ) ( q ; q ) ( x / 2 ) ν 2 ϕ 1 ( 0 , 0 ; q ν + 1 ; q , x 2 / 4 ) , | x | < 2 , {\displaystyle J_{\nu }^{(1)}(x;q)={\frac {(q^{\nu +1};q)_{\infty }}{(q;q)_{\infty }}}(x/2)^{\nu }{}_{2}\phi _{1}(0,0;q^{\nu +1};q,-x^{2}/4),\quad |x|<2,}
J ν ( 2 ) ( x ; q ) = ( q ν + 1 ; q ) ( q ; q ) ( x / 2 ) ν 0 ϕ 1 ( ; q ν + 1 ; q , x 2 q ν + 1 / 4 ) , x C , {\displaystyle J_{\nu }^{(2)}(x;q)={\frac {(q^{\nu +1};q)_{\infty }}{(q;q)_{\infty }}}(x/2)^{\nu }{}_{0}\phi _{1}(;q^{\nu +1};q,-x^{2}q^{\nu +1}/4),\quad x\in \mathbb {C} ,}
J ν ( 3 ) ( x ; q ) = ( q ν + 1 ; q ) ( q ; q ) ( x / 2 ) ν 1 ϕ 1 ( 0 ; q ν + 1 ; q , q x 2 / 4 ) , x C . {\displaystyle J_{\nu }^{(3)}(x;q)={\frac {(q^{\nu +1};q)_{\infty }}{(q;q)_{\infty }}}(x/2)^{\nu }{}_{1}\phi _{1}(0;q^{\nu +1};q,qx^{2}/4),\quad x\in \mathbb {C} .}

They can be reduced to the Bessel function by the continuous limit:

lim q 1 J ν ( k ) ( x ( 1 q ) ; q ) = J ν ( x ) ,   k = 1 , 2 , 3. {\displaystyle \lim _{q\to 1}J_{\nu }^{(k)}(x(1-q);q)=J_{\nu }(x),\ k=1,2,3.}

There is a connection formula between the first and second Jackson q-Bessel function (Gasper & Rahman (2004)):

J ν ( 2 ) ( x ; q ) = ( x 2 / 4 ; q ) J ν ( 1 ) ( x ; q ) ,   | x | < 2. {\displaystyle J_{\nu }^{(2)}(x;q)=(-x^{2}/4;q)_{\infty }J_{\nu }^{(1)}(x;q),\ |x|<2.}

For integer order, the q-Bessel functions satisfy

J n ( k ) ( x ; q ) = ( 1 ) n J n ( k ) ( x ; q ) ,   n Z ,   k = 1 , 2 , 3. {\displaystyle J_{n}^{(k)}(-x;q)=(-1)^{n}J_{n}^{(k)}(x;q),\ n\in \mathbb {Z} ,\ k=1,2,3.}

Properties

Negative Integer Order

By using the relations (Gasper & Rahman (2004)):

( q m + 1 ; q ) = ( q m + n + 1 ; q ) ( q m + 1 ; q ) n , {\displaystyle (q^{m+1};q)_{\infty }=(q^{m+n+1};q)_{\infty }(q^{m+1};q)_{n},}
( q ; q ) m + n = ( q ; q ) m ( q m + 1 ; q ) n ,   m , n Z , {\displaystyle (q;q)_{m+n}=(q;q)_{m}(q^{m+1};q)_{n},\ m,n\in \mathbb {Z} ,}

we obtain

J n ( k ) ( x ; q ) = ( 1 ) n J n ( k ) ( x ; q ) ,   k = 1 , 2. {\displaystyle J_{-n}^{(k)}(x;q)=(-1)^{n}J_{n}^{(k)}(x;q),\ k=1,2.}

Zeros

Hahn mentioned that J ν ( 2 ) ( x ; q ) {\displaystyle J_{\nu }^{(2)}(x;q)} has infinitely many real zeros (Hahn (1949)). Ismail proved that for ν > 1 {\displaystyle \nu >-1} all non-zero roots of J ν ( 2 ) ( x ; q ) {\displaystyle J_{\nu }^{(2)}(x;q)} are real (Ismail (1982)).

Ratio of q-Bessel Functions

The function i x 1 / 2 J ν + 1 ( 2 ) ( i x 1 / 2 ; q ) / J ν ( 2 ) ( i x 1 / 2 ; q ) {\displaystyle -ix^{-1/2}J_{\nu +1}^{(2)}(ix^{1/2};q)/J_{\nu }^{(2)}(ix^{1/2};q)} is a completely monotonic function (Ismail (1982)).

Recurrence Relations

The first and second Jackson q-Bessel function have the following recurrence relations (see Ismail (1982) and Gasper & Rahman (2004)):

q ν J ν + 1 ( k ) ( x ; q ) = 2 ( 1 q ν ) x J ν ( k ) ( x ; q ) J ν 1 ( k ) ( x ; q ) ,   k = 1 , 2. {\displaystyle q^{\nu }J_{\nu +1}^{(k)}(x;q)={\frac {2(1-q^{\nu })}{x}}J_{\nu }^{(k)}(x;q)-J_{\nu -1}^{(k)}(x;q),\ k=1,2.}
J ν ( 1 ) ( x q ; q ) = q ± ν / 2 ( J ν ( 1 ) ( x ; q ) ± x 2 J ν ± 1 ( 1 ) ( x ; q ) ) . {\displaystyle J_{\nu }^{(1)}(x{\sqrt {q}};q)=q^{\pm \nu /2}\left(J_{\nu }^{(1)}(x;q)\pm {\frac {x}{2}}J_{\nu \pm 1}^{(1)}(x;q)\right).}

Inequalities

When ν > 1 {\displaystyle \nu >-1} , the second Jackson q-Bessel function satisfies: | J ν ( 2 ) ( z ; q ) | ( q ; q ) ( q ; q ) ( | z | 2 ) ν exp { log ( | z | 2 q ν / 4 ) 2 log q } . {\displaystyle \left|J_{\nu }^{(2)}(z;q)\right|\leq {\frac {(-{\sqrt {q}};q)_{\infty }}{(q;q)_{\infty }}}\left({\frac {|z|}{2}}\right)^{\nu }\exp \left\{{\frac {\log \left(|z|^{2}q^{\nu }/4\right)}{2\log q}}\right\}.} (see Zhang (2006).)

For n Z {\displaystyle n\in \mathbb {Z} } , | J n ( 2 ) ( z ; q ) | ( q n + 1 ; q ) ( q ; q ) ( | z | 2 ) n ( | z | 2 ; q ) . {\displaystyle \left|J_{n}^{(2)}(z;q)\right|\leq {\frac {(-q^{n+1};q)_{\infty }}{(q;q)_{\infty }}}\left({\frac {|z|}{2}}\right)^{n}(-|z|^{2};q)_{\infty }.} (see Koelink (1993).)

Generating Function

The following formulas are the q-analog of the generating function for the Bessel function (see Gasper & Rahman (2004)):

n = t n J n ( 2 ) ( x ; q ) = ( x 2 / 4 ; q ) e q ( x t / 2 ) e q ( x / 2 t ) , {\displaystyle \sum _{n=-\infty }^{\infty }t^{n}J_{n}^{(2)}(x;q)=(-x^{2}/4;q)_{\infty }e_{q}(xt/2)e_{q}(-x/2t),}
n = t n J n ( 3 ) ( x ; q ) = e q ( x t / 2 ) E q ( q x / 2 t ) . {\displaystyle \sum _{n=-\infty }^{\infty }t^{n}J_{n}^{(3)}(x;q)=e_{q}(xt/2)E_{q}(-qx/2t).}

e q {\displaystyle e_{q}} is the q-exponential function.

Alternative Representations

Integral Representations

The second Jackson q-Bessel function has the following integral representations (see Rahman (1987) and Ismail & Zhang (2018a)):

J ν ( 2 ) ( x ; q ) = ( q 2 ν ; q ) 2 π ( q ν ; q ) ( x / 2 ) ν 0 π ( e 2 i θ , e 2 i θ , i x q ( ν + 1 ) / 2 2 e i θ , i x q ( ν + 1 ) / 2 2 e i θ ; q ) ( e 2 i θ q ν , e 2 i θ q ν ; q ) d θ , {\displaystyle J_{\nu }^{(2)}(x;q)={\frac {(q^{2\nu };q)_{\infty }}{2\pi (q^{\nu };q)_{\infty }}}(x/2)^{\nu }\cdot \int _{0}^{\pi }{\frac {\left(e^{2i\theta },e^{-2i\theta },-{\frac {ixq^{(\nu +1)/2}}{2}}e^{i\theta },-{\frac {ixq^{(\nu +1)/2}}{2}}e^{-i\theta };q\right)_{\infty }}{(e^{2i\theta }q^{\nu },e^{-2i\theta }q^{\nu };q)_{\infty }}}\,d\theta ,}
( a 1 , a 2 , , a n ; q ) := ( a 1 ; q ) ( a 2 ; q ) ( a n ; q ) ,   ν > 0 , {\displaystyle (a_{1},a_{2},\cdots ,a_{n};q)_{\infty }:=(a_{1};q)_{\infty }(a_{2};q)_{\infty }\cdots (a_{n};q)_{\infty },\ \Re \nu >0,}

where ( a ; q ) {\displaystyle (a;q)_{\infty }} is the q-Pochhammer symbol. This representation reduces to the integral representation of the Bessel function in the limit q 1 {\displaystyle q\to 1} .

J ν ( 2 ) ( z ; q ) = ( z / 2 ) ν 2 π log q 1 ( q ν + 1 / 2 z 2 e i x 4 ; q ) exp ( x 2 log q 2 ) ( q , q ν + 1 / 2 e i x ; q ) d x . {\displaystyle J_{\nu }^{(2)}(z;q)={\frac {(z/2)^{\nu }}{\sqrt {2\pi \log q^{-1}}}}\int _{-\infty }^{\infty }{\frac {\left({\frac {q^{\nu +1/2}z^{2}e^{ix}}{4}};q\right)_{\infty }\exp \left({\frac {x^{2}}{\log q^{2}}}\right)}{(q,-q^{\nu +1/2}e^{ix};q)_{\infty }}}\,dx.}

Hypergeometric Representations

The second Jackson q-Bessel function has the following hypergeometric representations (see Koelink (1993), Chen, Ismail, and Muttalib (1994)):

J ν ( 2 ) ( x ; q ) = ( x / 2 ) ν ( q ; q )   1 ϕ 1 ( x 2 / 4 ; 0 ; q , q ν + 1 ) , {\displaystyle J_{\nu }^{(2)}(x;q)={\frac {(x/2)^{\nu }}{(q;q)_{\infty }}}\ _{1}\phi _{1}(-x^{2}/4;0;q,q^{\nu +1}),}
J ν ( 2 ) ( x ; q ) = ( x / 2 ) ν ( q ; q ) 2 ( q ; q ) [ f ( x / 2 , q ( ν + 1 / 2 ) / 2 ; q ) + f ( x / 2 , q ( ν + 1 / 2 ) / 2 ; q ) ] ,   f ( x , a ; q ) := ( i a x ; q )   3 ϕ 2 ( a , a , 0 q , i a x ; q , q ) . {\displaystyle J_{\nu }^{(2)}(x;q)={\frac {(x/2)^{\nu }({\sqrt {q}};q)_{\infty }}{2(q;q)_{\infty }}},\ f(x,a;q):=(iax;{\sqrt {q}})_{\infty }\ _{3}\phi _{2}\left({\begin{matrix}a,&-a,&0\\-{\sqrt {q}},&iax\end{matrix}};{\sqrt {q}},{\sqrt {q}}\right).}

An asymptotic expansion can be obtained as an immediate consequence of the second formula.

For other hypergeometric representations, see Rahman (1987).

Modified q-Bessel Functions

The q-analog of the modified Bessel functions are defined with the Jackson q-Bessel function (Ismail (1981) and Olshanetsky & Rogov (1995)):

I ν ( j ) ( x ; q ) = e i ν π / 2 J ν ( j ) ( x ; q ) ,   j = 1 , 2. {\displaystyle I_{\nu }^{(j)}(x;q)=e^{i\nu \pi /2}J_{\nu }^{(j)}(x;q),\ j=1,2.}
K ν ( j ) ( x ; q ) = π 2 sin ( π ν ) { I ν ( j ) ( x ; q ) I ν ( j ) ( x ; q ) } ,   j = 1 , 2 ,   ν C Z , {\displaystyle K_{\nu }^{(j)}(x;q)={\frac {\pi }{2\sin(\pi \nu )}}\left\{I_{-\nu }^{(j)}(x;q)-I_{\nu }^{(j)}(x;q)\right\},\ j=1,2,\ \nu \in \mathbb {C} -\mathbb {Z} ,}
K n ( j ) ( x ; q ) = lim ν n K ν ( j ) ( x ; q ) ,   n Z . {\displaystyle K_{n}^{(j)}(x;q)=\lim _{\nu \to n}K_{\nu }^{(j)}(x;q),\ n\in \mathbb {Z} .}

There is a connection formula between the modified q-Bessel functions:

I ν ( 2 ) ( x ; q ) = ( x 2 / 4 ; q ) I ν ( 1 ) ( x ; q ) . {\displaystyle I_{\nu }^{(2)}(x;q)=(-x^{2}/4;q)_{\infty }I_{\nu }^{(1)}(x;q).}

For statistical applications, see Kemp (1997).

Recurrence Relations

By the recurrence relation of Jackson q-Bessel functions and the definition of modified q-Bessel functions, the following recurrence relation can be obtained ( K ν ( j ) ( x ; q ) {\displaystyle K_{\nu }^{(j)}(x;q)} also satisfies the same relation) (Ismail (1981)):

q ν I ν + 1 ( j ) ( x ; q ) = 2 z ( 1 q ν ) I ν ( j ) ( x ; q ) + I ν 1 ( j ) ( x ; q ) ,   j = 1 , 2. {\displaystyle q^{\nu }I_{\nu +1}^{(j)}(x;q)={\frac {2}{z}}(1-q^{\nu })I_{\nu }^{(j)}(x;q)+I_{\nu -1}^{(j)}(x;q),\ j=1,2.}

For other recurrence relations, see Olshanetsky & Rogov (1995).

Continued Fraction Representation

The ratio of modified q-Bessel functions form a continued fraction (Ismail (1981)):

I ν ( 2 ) ( z ; q ) I ν 1 ( 2 ) ( z ; q ) = 1 2 ( 1 q ν ) / z + q ν 2 ( 1 q ν + 1 ) / z + q ν + 1 2 ( 1 q ν + 2 ) / z + . {\displaystyle {\frac {I_{\nu }^{(2)}(z;q)}{I_{\nu -1}^{(2)}(z;q)}}={\cfrac {1}{2(1-q^{\nu })/z+{\cfrac {q^{\nu }}{2(1-q^{\nu +1})/z+{\cfrac {q^{\nu +1}}{2(1-q^{\nu +2})/z+\ddots }}}}}}.}

Alternative Representations

Hypergeometric Representations

The function I ν ( 2 ) ( z ; q ) {\displaystyle I_{\nu }^{(2)}(z;q)} has the following representation (Ismail & Zhang (2018b)):

I ν ( 2 ) ( z ; q ) = ( z / 2 ) ν ( q , q ) 1 ϕ 1 ( z 2 / 4 ; 0 ; q , q ν + 1 ) . {\displaystyle I_{\nu }^{(2)}(z;q)={\frac {(z/2)^{\nu }}{(q,q)_{\infty }}}{}_{1}\phi _{1}(z^{2}/4;0;q,q^{\nu +1}).}

Integral Representations

The modified q-Bessel functions have the following integral representations (Ismail (1981)):

I ν ( 2 ) ( z ; q ) = ( z 2 / 4 ; q ) ( 1 π 0 π cos ν θ d θ ( e i θ z / 2 ; q ) ( e i θ z / 2 ; q ) sin ν π π 0 e ν t d t ( e t z / 2 ; q ) ( e t z / 2 ; q ) ) , {\displaystyle I_{\nu }^{(2)}(z;q)=\left(z^{2}/4;q\right)_{\infty }\left({\frac {1}{\pi }}\int _{0}^{\pi }{\frac {\cos \nu \theta \,d\theta }{\left(e^{i\theta }z/2;q\right)_{\infty }\left(e^{-i\theta }z/2;q\right)_{\infty }}}-{\frac {\sin \nu \pi }{\pi }}\int _{0}^{\infty }{\frac {e^{-\nu t}\,dt}{\left(-e^{t}z/2;q\right)_{\infty }\left(-e^{-t}z/2;q\right)_{\infty }}}\right),}
K ν ( 1 ) ( z ; q ) = 1 2 0 e ν t d t ( e t / 2 z / 2 ; q ) ( e t / 2 z / 2 ; q ) ,   | arg z | < π / 2 , {\displaystyle K_{\nu }^{(1)}(z;q)={\frac {1}{2}}\int _{0}^{\infty }{\frac {e^{-\nu t}\,dt}{\left(-e^{t/2}z/2;q\right)_{\infty }\left(-e^{-t/2}z/2;q\right)_{\infty }}},\ |\arg z|<\pi /2,}
K ν ( 1 ) ( z ; q ) = 0 cosh ν d t ( e t / 2 z / 2 ; q ) ( e t / 2 z / 2 ; q ) . {\displaystyle K_{\nu }^{(1)}(z;q)=\int _{0}^{\infty }{\frac {\cosh \nu \,dt}{\left(-e^{t/2}z/2;q\right)_{\infty }\left(-e^{-t/2}z/2;q\right)_{\infty }}}.}

See also

References

Categories: