Misplaced Pages

Kunita–Watanabe inequality

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In stochastic calculus, the Kunita–Watanabe inequality is a generalization of the Cauchy–Schwarz inequality to integrals of stochastic processes. It was first obtained by Hiroshi Kunita and Shinzo Watanabe and plays a fundamental role in their extension of Ito's stochastic integral to square-integrable martingales.

Statement of the theorem

Let M, N be continuous local martingales and H, K measurable processes. Then

0 t | H s | | K s | | d M , N s | 0 t H s 2 d M s 0 t K s 2 d N s {\displaystyle \int _{0}^{t}\left|H_{s}\right|\left|K_{s}\right|\left|\mathrm {d} \langle M,N\rangle _{s}\right|\leq {\sqrt {\int _{0}^{t}H_{s}^{2}\,\mathrm {d} \langle M\rangle _{s}}}{\sqrt {\int _{0}^{t}K_{s}^{2}\,\mathrm {d} \langle N\rangle _{s}}}}

where the angled brackets indicates the quadratic variation and quadratic covariation operators. The integrals are understood in the Lebesgue–Stieltjes sense.

References

  1. The Kunita–Watanabe Extension
Categories: