Misplaced Pages

Phenylacetylcarbinol

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from L-phenylacetylcarbinol)
Phenylacetylcarbinol
LPAC
Names
IUPAC name 1-hydroxy-1-phenyl-propan-2-one
Other names l-PAC
(R)-PAC
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.001.824 Edit this at Wikidata
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C9H10O2/c1-7(10)9(11)8-5-3-2-4-6-8/h2-6,9,11H,1H3/t9-/m0/s1Key: ZBFFNPODXBJBPW-VIFPVBQESA-N
  • InChI=1/C9H10O2/c1-7(10)9(11)8-5-3-2-4-6-8/h2-6,9,11H,1H3/t9-/m0/s1Key: ZBFFNPODXBJBPW-VIFPVBQEBH
SMILES
  • CC(=O)(C1=CC=CC=C1)O
Properties
Chemical formula C9H10O2
Molar mass 150.177 g·mol
Appearance Yellow-green liquid
Density 1.119 g/cm
Melting point 9–11 °C (48–52 °F; 282–284 K)
Boiling point 253 °C (487 °F; 526 K)
Solubility in water Insoluble
Solubility in other solvents Freely soluble in alcohols, ether, and aromatic solvents
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound
L-pac produced by biotransformation of benzaldehyde

Phenylacetylcarbinol (PAC) is an organic compound that has two enantiomers, one with R- and one with S-configuration. (R)-PAC, which is commonly called l-PAC, is known as a precursor in the synthesis of pharmaceuticals such as ephedrine and pseudoephedrine.

Nomenclature

(R)-PAC or (R)-(−)-phenylacetylcarbinol is identical to l-PAC, referring to the outdated d/l system. (R)-PAC is the levo-rotating isomer of phenylacetylcarbinol.

The IUPAC name of phenylacetylcarbinol is 1-hydroxy-1-phenylpropan-2-one. Synonyms are 1-hydroxy-1-phenyl-2-propanone and 1-Hydroxy-1-phenylacetone.

Production

(R)-PAC is widely synthesized by fermentation of benzaldehyde and dextrose. In this process, colonies of yeast (in particular, strains such as Candida utilis, Torulaspora delbrueckii, or Saccharomyces cerevisiae) are cultivated and added to a broth of water, dextrose, and the enzyme pyruvate decarboxylase in a vat. The yeast is left to grow for a period of time, after which the benzaldehyde is introduced into the broth. The yeast then ferments the benzaldehyde into (R)-PAC. Boiling point at 12mmHg is 124-125C.

The majority of L-PAC is generated in pharmaceutical plants in India, as an intermediate precursor in the production of pseudoephedrine.

There are also biochemical reactions where enzymes such as acetohydroxyacid synthase I from E. coli condense pyruvate and benzaldehyde into R-PAC. Such methods have much higher conversion rates in comparison to the conventional yeast fermentation.

References

  1. "1-Phenyl-1-hydroxypropan-2-one".
  2. B, Rosche; V, Sandford; M, Breuer; B, Hauer; P, Rogers (2001). "Biotransformation of benzaldehyde into ( R )-phenylacetylcarbinol by filamentous fungi or their extracts". Applied Microbiology and Biotechnology. 57 (3): 309–315. doi:10.1007/s002530100781.
  3. LEKSAWASDI, N. "Kinetics and Modelling of Enzymatic Process for R-phenylacetylcarbinol (PAC) Production". University of New South Wales; Sydney, Australia. August, 2004; pp. 8-15. Archived 2006-06-22 at the Wayback Machine
  4. Engel, Stanislav; Vyazmensky, Maria; Berkovich, Dvora; Barak, Ze'ev; Merchuk, Jose; Chipman, David M. (2005). "Column flow reactor using acetohydroxyacid synthase I from Escherichia coli as catalyst in continuous synthesis of R-phenylacetyl carbinol". Biotechnology and Bioengineering. 89 (6): 733–740. doi:10.1002/bit.20392. PMID 15685598.
Categories: