This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Lagrangian particle tracking" – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this message) |
In experimental fluid mechanics, Lagrangian Particle Tracking refers to the process of determining trajectories of small neutrally buoyant particles (flow tracers) that are freely suspended within a turbulent flow field. These are usually obtained by 3-D Particle Tracking Velocimetry. A collection of such particle trajectories can be used for analyzing the Lagrangian dynamics of the fluid motion, for performing Lagrangian statistics of various flow quantities etc.
In computational fluid dynamics, the Lagrangian particle tracking (or in short LPT method) is a numerical technique for simulated tracking of particle paths Lagrangian within an Eulerian phase. It is also commonly referred to as Discrete Particle Simulation (DPS). Some simulation cases for which this method is applicable are: sprays, small bubbles, dust particles, and is especially optimal for dilute multiphase flows with large Stokes number.
See also
References
- Papantoniou D A, Dracos Th (1990). Lagrangian statistics in open channel flow by 3-D particle tracking velocimetry. Elsevier Science Publishing. p. 942. ISBN 9780444600134.}
- Lüthi B; Tsinober A; Kinzelbach W (10 April 2005). "Lagrangian Measurement of Vorticity Dynamics in Turbulent Flow". Journal of Fluid Mechanics. 528. Cambridge University Press: 87–118. Bibcode:2005JFM...528...87L. doi:10.1017/S0022112004003283. S2CID 121516502.
- Guan Heng Yeoh, Jiyuan Tu (2009). Computational Techniques for Multiphase Flows. Elsevier. p. 643. ISBN 978-0080467337.
This fluid dynamics–related article is a stub. You can help Misplaced Pages by expanding it. |