Misplaced Pages

Bruch's membrane

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Lamina basalis choroideae) Component of the eye
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Bruch's membrane" – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this message)
Bruch's membrane
Detailed illustration showing the bruch's membrane and its layers.
Details
SystemVisual system
Identifiers
Latinlamina basalis choroideae
MeSHD016570
Anatomical terminology[edit on Wikidata]

Bruch's membrane or lamina vitrea is the innermost layer of the choroid of the eye. It is also called the vitreous lamina or Membrane vitriae, because of its glassy microscopic appearance. It is 2–4 μm thick.

Anatomy

Structure

Bruch's membrane consists of five layers (from inside to outside):

  1. the basement membrane of the retinal pigment epithelium
  2. the inner collagenous zone
  3. a central band of elastic fibers
  4. the outer collagenous zone
  5. the basement membrane of the choriocapillaris

Development

The membrane grows thicker with age. With age, lipid-containing extracellular deposits may accumulate between the membrane and the basal lamina of the retinal pigmental epithelium, impairing exchange of solutes and contributing to age-related pathology.

Embryology

Bruch's membrane is present by midterm in fetal development as an elastic sheet.

Function

The membrane is involved in the regulation of fluid and solute passage from the choroid to the retina.

Pathology

Bruch's membrane thickens with age, slowing the transport of metabolites. This may lead to the formation of drusen in age-related macular degeneration. There is also a buildup of deposits (Basal Linear Deposits or BLinD and Basal Lamellar Deposits BLamD) on and within the membrane, primarily consisting of phospholipids. The accumulation of lipids appears to be greater in the central fundus than in the periphery. This build up seems to fragment the membrane into a lamellar structure more like puff-pastry than a barrier. Inflammatory and neovascular mediators can then invite choroidal vessels to grow into and beyond the fragmented membrane. This neovascular membrane destroys the architecture of the outer retina and leads to sudden loss of central vision – wet age related macular degeneration.

Pseudoxanthoma elasticum, myopia and trauma can also cause defects in Bruch's membrane which may lead to choroidal neovascularization. Alport's Syndrome, a genetic disorder affecting the alpha(IV) collagen chains, can also lead to defects in the Bruch membrane such as 'dot and fleck' retinopathy. Angioid streaks cause calcification, thickening and breaks in Bruch's membrane.

Eponym

Bruch's membrane was named after the German anatomist Karl Wilhelm Ludwig Bruch.

References

  1. ^ Standring, Susan (2020). Gray's Anatomy: The Anatomical Basis of Clinical Practice (42th ed.). New York. p. 795. ISBN 978-0-7020-7707-4. OCLC 1201341621.{{cite book}}: CS1 maint: location missing publisher (link)
  2. ^ Lee, Christina J.; Vroom, Jonathan A.; Fishman, Harvey A.; Bent, Stacey F. (Mar 2006). "Determination of human lens capsule permeability and its feasibility as a replacement for Bruch's membrane". Biomaterials. 27 (8): 1670–1678. doi:10.1016/j.biomaterials.2005.09.008. PMID 16199085.
  3. eOptha website: Anatomy of Uvea by Parthopratim Dutta Majumder Archived 2015-02-26 at the Wayback Machine
  4. Young R (Mar 1987). "Pathophysiology of age-related macular degeneration". Surv Ophthalmol. 31 (5): 291–306. doi:10.1016/0039-6257(87)90115-9. PMID 3299827.
  5. "Angioid Streaks - EyeWiki". eyewiki.aao.org.

External links

Anatomy of the globe of the human eye
Fibrous tunic
(outer)
Sclera
Cornea
1:posterior segment 2:ora serrata 3:ciliary muscle 4:ciliary zonules 5:Schlemm's canal 6:pupil 7:anterior chamber 8:cornea 9:iris 10:lens cortex 11:lens nucleus 12:ciliary process 13:conjunctiva 14:inferior oblique muscule 15:inferior rectus muscule 16:medial rectus muscle 17:retinal arteries and veins 18:optic disc 19:dura mater 20:central retinal artery 21:central retinal vein 22:optic nerve 23:vorticose vein 24:bulbar sheath 25:macula 26:fovea 27:sclera 28:choroid 29:superior rectus muscle 30:retina1: posterior segment2: ora serrata3: ciliary muscle4: ciliary zonules5: Schlemm's canal6: pupil7: anterior chamber8: cornea9: iris10: lens cortex11: lens nucleus12: ciliary process13: conjunctiva14: inferior oblique muscule15: inferior rectus muscule16: medial rectus muscle17: retinal arteries and veins18: optic disc19: dura mater20: central retinal artery21: central retinal vein22: optic nerve23: vorticose vein24: bulbar sheath25: macula26: fovea27: sclera28: choroid29: superior rectus muscle30: retina
1:posterior segment 2:ora serrata 3:ciliary muscle 4:ciliary zonules 5:Schlemm's canal 6:pupil 7:anterior chamber 8:cornea 9:iris 10:lens cortex 11:lens nucleus 12:ciliary process 13:conjunctiva 14:inferior oblique muscule 15:inferior rectus muscule 16:medial rectus muscle 17:retinal arteries and veins 18:optic disc 19:dura mater 20:central retinal artery 21:central retinal vein 22:optic nerve 23:vorticose vein 24:bulbar sheath 25:macula 26:fovea 27:sclera 28:choroid 29:superior rectus muscle 30:retina
Uvea / vascular
tunic
(middle)
Choroid
Ciliary body
Iris
Retina (inner)
Layers
Cells
Other
Anatomical regions
of the eye
Anterior segment
Posterior segment
Other
Categories: