Misplaced Pages

List of books about polyhedra

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is a list of books about polyhedra.

Polyhedral models

Cut-out kits

  • Jenkins, Gerald; Bear, Magdalen (1998). Paper Polyhedra in Colour. Tarquin. ISBN 1-899618-23-6. Advanced Polyhedra 1: The Final Stellation, ISBN 1-899618-61-9. Advanced Polyhedra 2: The Sixth Stellation, ISBN 1-899618-62-7. Advanced Polyhedra 3: The Compound of Five Cubes, ISBN 978-1-899618-63-7.
  • Jenkins, Gerald; Wild, Anne (2000). Mathematical Curiosities. Tarquin. ISBN 1-899618-35-X. More Mathematical Curiosities, Tarquin, ISBN 1-899618-36-8. Make Shapes 1, ISBN 0-906212-00-6. Make Shapes 2, ISBN 0-906212-01-4.
  • Smith, A. G. (1986). Cut and Assemble 3-D Geometrical Shapes: 10 Models in Full Color. Dover. Cut and Assemble 3-D Star Shapes, 1997. Easy-To-Make 3D Shapes in Full Color, 2000.
  • Torrence, Eve (2011). Cut and Assemble Icosahedra: Twelve Models in White and Color. Dover.

Origami

Other model-making

Mathematical studies

Introductory level and general audience

  • Akiyama, Jin; Matsunaga, Kiyoko (2024). Treks into Intuitive Geometry: The World of Polygons and Polyhedra (2nd ed.). Singapore: Springer. ISBN 978-981-99-8607-1.
  • Alsina, Claudi (2017). The Thousand Faces of Geometric Beauty: The Polyhedra. Our Mathematical World. Vol. 23. National Geographic. ISBN 978-84-473-8929-2.
  • Britton, Jill (2001). Polyhedra Pastimes. Dale Seymour Publishing. ISBN 0-7690-2782-2.
  • Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press.
  • Fetter, Ann E. (1991). The Platonic Solids Activity Book. Key Curriculum Press.
  • Holden, Alan (1971). Shapes, Space and Symmetry. Dover, 1991.
  • le Masne, Roger (2013). Les polyèdres, ou la beauté des mathématiques (in French) (4th ed.). Self-published.
  • Miyazaki, Koji (1983). Katachi to kūkan: Tajigen sekai no kiseki (in Japanese). Wiley. Translated into English as An Adventure in Multidimensional Space: The Art and Geometry of Polygons, Polyhedra, and Polytopes, Wiley, 1986, and into German as Polyeder und Kosmos: Spuren einer mehrdimensionalen Welt, Vieweg, 1987.
  • Pearce, Peter; Pearce, Susan (1979). Polyhedra Primer. Van Nostrand Reinhold. ISBN 978-0-442-26496-3.
  • Pugh, Anthony (1976). Polyhedra: A Visual Approach. University of California Press.
  • Radin, Dan (2008). The Platonic Solids Book. Self-published.
  • Sutton, Daud (2002). Platonic & Archimedean Solids: The Geometry of Space. Wooden Books. ISBN 978-0802713865.

Textbooks

Monographs and special topics

  • Coxeter, H. S. M.; du Val, P.; Flather, H. T.; Petrie, J. F. (1938). The Fifty-Nine Icosahedra. University of Toronto Studies, Mathematical Series. Vol. 6. University of Toronto Press. 2nd ed., Springer, 1982. 3rd ed., Tarquin, 1999.
  • Coxeter, H. S. M. (1974). Regular Complex Polytopes. Cambridge University Press. 2nd ed., 1991.
  • Demaine, Erik; O'Rourke, Joseph (2007). Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press.
  • Deza, Michel; Grishukhin, Viatcheslav; Shtogrin, Mikhail (2004). Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Z n {\displaystyle \mathbb {Z} _{n}} . London: Imperial College Press. doi:10.1142/9781860945489. ISBN 1-86094-421-3.
  • Lakatos, Imre (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press.
  • McMullen, Peter (2020). Geometric Regular Polytopes. Encyclopedia of Mathematics and its Applications. Vol. 172. Cambridge University Press.
  • McMullen, Peter; Schulte, Egon (2002). Abstract Regular Polytopes. Encyclopedia of Mathematics and its Applications. Vol. 92. Cambridge University Press.
  • McMullen, Peter; Shephard, G. C. (1971). Convex Polytopes and the Upper Bound Conjecture. London Mathematical Society Lecture Note Series. Vol. 3. Cambridge University Press.
  • Nef, Walter (1978). Beiträge zur Theorie der Polyeder: Mit Anwendungen in der Computergraphik [Contributions to the theory of the polyhedron, with applications in computer graphics] (in German). Herbert Lang.
  • Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Vol. 21. Hindustan Book Agency.
  • Richter-Gebert, Jürgen (1996). Realization Spaces of Polytopes. Lecture Notes in Mathematics. Vol. 1643. Springer.
  • Stewart, B. M. (1970). Adventures Among the Toroids. Self-published. 2nd ed., 1980.
  • Wachman, Avraham; Burt, Michael; Kleinmann, M. (1974). Infinite Polyhedra. Technion. 2nd ed., 2005.
  • Wu, Wen-tsün (1965). A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space. Science Press.
  • Zalgaller, Viktor A. (1969). Convex Polyhedra with Regular Faces. Consultants Bureau. Translated and corrected from Zalgaller, V. A. (1967). Выпуклые многогранники с правильными гранями. Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI) (in Russian). Vol. 2. Nauka.
  • Zhizhin, Gennadiy Vladimirovich (2022). The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems. Advances in Chemical and Materials Engineering. IGI Global. ISBN 9781799883760.

Edited volumes

  • Avis, David; Bremner, David; Deza, Antoine, eds. (2009). Polyhedral Computation. CRM Proceedings and Lecture Notes. Vol. 48. American Mathematical Society.
  • Gabriel, Jean-François, ed. (1997). Beyond the Cube: The Architecture of Space Frames and Polyhedra. Wiley.
  • Kalai, Gil; Ziegler, Günter M., eds. (2012). Polytopes - Combinatorics and Computation. DMV Seminar. Vol. 29. Springer.
  • Senechal, Marjorie; Fleck, G., eds. (1988). Shaping Space: A Polyhedral Approach. Birkhauser. ISBN 0-8176-3351-0. 2nd ed., Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, Springer, 2013.

History

Early works

Listed in chronological order, and including some works shorter than book length:

Books about historical topics

  • Andrews, Noam (2022). The Polyhedrists: Art and Geometry in the Long Sixteenth Century. MIT Press.
  • Davis, Margaret Daly (1977). Piero della Francesca's Mathematical Treatises: The "Trattato d'abaco" and "Libellus de quinque corporibus regularibus". Longo.
  • Dézarnaud-Dandine, Christine; Sevin, Alain (2009). Histoire des polyèdres: Quand la nature est géomètre (in French). Vuibert.
  • Federico, Pasquale Joseph (1984). Descartes on Polyhedra: A Study of the "De solidorum elementis". Sources in the History of Mathematics and Physical Sciences. Vol. 4. Springer.
  • Richeson, D. S. (2008). Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press.
  • Sanders, Philip Morris (1990). The Regular Polyhedra in Renaissance Science and Philosophy. Warburg Institute, University of London.
  • Wade, David (2012). Fantastic Geometry: Polyhedra and the Artistic Imagination in the Renaissance. Squeeze Press.

References

  1. Neal, David (March 1987). "Tarquin Polyhedra (review of Paper Polyhedra in Colour)". Mathematics in School. 16 (2): 47. JSTOR 30214199.
  2. "Science News Books". Science News. 144 (21): 335–350. November 20, 1993. JSTOR 3977680. Includes a brief review of Unit Origami: Multidimensional Transformations on p. 350.
  3. Reviews of 3D Geometric Origami: Modular Origami Polyhedra:
  4. Reviews of Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality:
    • Murphey, Bonnie (January 2004). Mathematics Teaching in the Middle School. 9 (5): 288. JSTOR 41181919.{{cite journal}}: CS1 maint: untitled periodical (link)
    • Kessler, Charlotte (January 2004). The Mathematics Teacher. 97 (1): 78. JSTOR 20871510.{{cite journal}}: CS1 maint: untitled periodical (link)
  5. Reviews of Modular Origami Polyhedra (2nd ed.):
  6. Ollerton, Mike (January 1998). "Review of Mathematical Origami: Geometrical Shapes by Paper Folding". Mathematics in School. 27 (1): 47. JSTOR 30211857.
  7. Reviews of Origami Polyhedra Design:
    • Hagedorn, Thomas R. (April 2010). "Review". MAA Reviews. Mathematical Association of America.
    • Luck, Gary S. (March 2011). The Mathematics Teacher. 104 (7): 558. JSTOR 20876948.{{cite journal}}: CS1 maint: untitled periodical (link)
    • Thomas, Rachel (December 2009). "Review". Plus Magazine.
  8. Short, Martha (March 2003). "Review of A Plethora of Polyhedra in Origami". Mathematics Teaching in the Middle School. 8 (7): 380, 382. JSTOR 41181848.
  9. Reviews of Mathematical Models:
  10. Reviews of Build Your Own Polyhedra:
  11. Reviews of Polyhedron Models:
  12. Reviews of Spherical Models:
  13. Reviews of Dual Models:
  14. Reviews of Treks into Intuitive Geometry: The World of Polygons and Polyhedra (1st ed.):
  15. Callahan, Deborah D. (September 2002). "Review of Polyhedra Pastimes". Mathematics Teaching in the Middle School. 8 (1): 64. JSTOR 41181235.
  16. Reviews of Polyhedra:
  17. Hayek, Linda M. (April 1994). "Review of The Platonic Solids Activity Book". The Mathematics Teacher. 87 (4): 298. JSTOR 27968850.
  18. Reviews of Shapes, Space and Symmetry:
  19. Reviews of Les polyèdres:
  20. Grünbaum, Branko (January–February 1988). "Review of An Adventure in Multidimensional Space". American Scientist. 76 (1): 94–95. JSTOR 27855044.
  21. Reviews of Polyhedra Primer:
  22. Coxeter, H. S. M. "Review of Polyhedra: A Visual Approach". Mathematical Reviews. MR 0451161.
  23. Ashbacher, Charles (November 2008). "Review of The Platonic Solids Book". MAA Reviews. Mathematical Association of America.
  24. Hoehn, Larry (February 2003). "Publications". The Mathematics Teacher. 96 (2): 154. doi:10.5951/MT.96.2.0154. JSTOR 20871261. Review of three books including Platonic & Archimedean Solids.
  25. Reviews of Convex Polyhedra:
  26. Reviews of Computing the Continuous Discretely:
  27. Reviews of An Introduction to Convex Polytopes:
  28. Reviews of Regular Polytopes:
  29. Reviews of Regular Figures:
  30. Reviews of Convex Polytopes:
  31. Reviews of Convex Figures and Polyhedra:
  32. Jucovič, E. "Review of Reguläre und halbreguläre Polyeder". MathSciNet (in German). MR 0248605.
  33. Reviews of Lectures in Geometric Combinatorics:
  34. Reviews of Lectures on Polytopes:
  35. Reviews of The Fifty-Nine Icosahedra:
  36. Reviews of Regular Complex Polytopes:
  37. Reviews of Geometric Folding Algorithms:
  38. Reviews of Scale-Isometric Polytopal Graphs:
  39. Reviews of Proofs and Refutations:
  40. Review of Geometric Regular Polytopes:
  41. Reviews of Abstract Regular Polytopes:
  42. Reviews of Convex Polytopes and the Upper Bound Conjecture:
  43. Hertel, E. "Review of Beiträge zur Theorie der Polyeder". MathSciNet (in German). MR 0500548.
  44. Reviews of Convex Polyhedra with Regularity Conditions and Hilbert’s Third Problem:
  45. Reviews of Realization Spaces of Polytopes:
  46. Reviews of Adventures Among the Toroids:
  47. Wenninger, Magnus J. (Spring 1976). "Review of Infinite Polyhedra". Leonardo. 9 (2): 158. doi:10.2307/1573140. JSTOR 1573140.
  48. Reviews of A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space:
  49. Review of Convex Polyhedra with Regular Faces:
  50. Chilton, J. C. (April 2000). "Review of Beyond the Cube". Journal of the International Association for Shell and Spatial Structures. 41 (1): 132.
  51. Reviews of Shaping Space:
  52. Sanders, P. M. (1984). "Charles de Bovelles's treatise on the regular polyhedra (Paris, 1511)". Annals of Science. 41 (6): 513–566. doi:10.1080/00033798400200401. MR 0780985.
  53. Friedman, Michael (2018). A History of Folding in Mathematics: Mathematizing the Margins. Science Networks. Historical Studies. Vol. 59. Birkhäuser. p. 71. doi:10.1007/978-3-319-72487-4. ISBN 978-3-319-72486-7.
  54. Senechal, Marjorie; Galiulin, R. V. (1984). "An introduction to the theory of figures: the geometry of E. S. Fedorov". Structural Topology (in English and French) (10): 5–22. hdl:2099/1195. MR 0768703.
  55. Schönflies, A. M. "Review of Zur Morphologie der Polyeder". Jahrbuch über die Fortschritte der Mathematik (in German). JFM 23.0544.03.
  56. Reviews of The Polyhedrists:
  57. Reviews of Piero della Francesca's Mathematical Treatises:
    • Tormey, Judith Farr (Spring 1979). The Journal of Aesthetics and Art Criticism. 37 (3): 389–390. doi:10.2307/430812. JSTOR 430812.{{cite journal}}: CS1 maint: untitled periodical (link)
    • Rose, Paul Lawrence (1980). Bibliothèque d'Humanisme et Renaissance. 42 (2): 487–488. JSTOR 20676148.{{cite journal}}: CS1 maint: untitled periodical (link)
    • Maccagni, Carlo (1979). Annali della Scuola Normale Superiore di Pisa. Classe di Lettere e Filosofia (Serie III). 9 (4): 1909–1911. JSTOR 24305449.{{cite journal}}: CS1 maint: untitled periodical (link)
  58. Reviews of Descartes on Polyhedra:
  59. Reviews of Euler's Gem:
  60. Prudence, Paul. "David Wade's 'Fantastic Geometry' – The Works of Wenzel Jamnitzer & Lorenz Stoer". Dataisnature.
Categories: