The following is a list of integrals (anti-derivative functions) of hyperbolic functions . For a complete list of integral functions, see list of integrals .
In all formulas the constant a is assumed to be nonzero, and C
denotes the constant of integration .
Integrals involving only hyperbolic sine functions
∫
sinh
a
x
d
x
=
1
a
cosh
a
x
+
C
{\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C}
∫
sinh
2
a
x
d
x
=
1
4
a
sinh
2
a
x
−
x
2
+
C
{\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C}
∫
sinh
n
a
x
d
x
=
{
1
a
n
(
sinh
n
−
1
a
x
)
(
cosh
a
x
)
−
n
−
1
n
∫
sinh
n
−
2
a
x
d
x
,
n
>
0
1
a
(
n
+
1
)
(
sinh
n
+
1
a
x
)
(
cosh
a
x
)
−
n
+
2
n
+
1
∫
sinh
n
+
2
a
x
d
x
,
n
<
0
,
n
≠
−
1
{\displaystyle \int \sinh ^{n}ax\,dx={\begin{cases}{\frac {1}{an}}(\sinh ^{n-1}ax)(\cosh ax)-{\frac {n-1}{n}}\displaystyle \int \sinh ^{n-2}ax\,dx,&n>0\\{\frac {1}{a(n+1)}}(\sinh ^{n+1}ax)(\cosh ax)-{\frac {n+2}{n+1}}\displaystyle \int \sinh ^{n+2}ax\,dx,&n<0,n\neq -1\end{cases}}}
∫
d
x
sinh
a
x
=
1
a
ln
|
tanh
a
x
2
|
+
C
=
1
a
ln
|
cosh
a
x
+
1
sinh
a
x
|
+
C
=
1
a
ln
|
sinh
a
x
cosh
a
x
+
1
|
+
C
=
1
2
a
ln
|
cosh
a
x
−
1
cosh
a
x
+
1
|
+
C
{\displaystyle {\begin{aligned}\int {\frac {dx}{\sinh ax}}&={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\\&={\frac {1}{a}}\ln \left|{\frac {\cosh ax+1}{\sinh ax}}\right|+C\\&={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\\&={\frac {1}{2a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\end{aligned}}}
∫
d
x
sinh
n
a
x
=
−
cosh
a
x
a
(
n
−
1
)
sinh
n
−
1
a
x
−
n
−
2
n
−
1
∫
d
x
sinh
n
−
2
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
x
sinh
a
x
d
x
=
1
a
x
cosh
a
x
−
1
a
2
sinh
a
x
+
C
{\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C}
∫
(
sinh
a
x
)
(
sinh
b
x
)
d
x
=
1
a
2
−
b
2
(
a
(
sinh
b
x
)
(
cosh
a
x
)
−
b
(
cosh
b
x
)
(
sinh
a
x
)
)
+
C
(for
a
2
≠
b
2
)
{\displaystyle \int (\sinh ax)(\sinh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh bx)(\cosh ax)-b(\cosh bx)(\sinh ax){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}
Integrals involving only hyperbolic cosine functions
∫
cosh
a
x
d
x
=
1
a
sinh
a
x
+
C
{\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C}
∫
cosh
2
a
x
d
x
=
1
4
a
sinh
2
a
x
+
x
2
+
C
{\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C}
∫
cosh
n
a
x
d
x
=
{
1
a
n
(
sinh
a
x
)
(
cosh
n
−
1
a
x
)
+
n
−
1
n
∫
cosh
n
−
2
a
x
d
x
,
n
>
0
−
1
a
(
n
+
1
)
(
sinh
a
x
)
(
cosh
n
+
1
a
x
)
+
n
+
2
n
+
1
∫
cosh
n
+
2
a
x
d
x
,
n
<
0
,
n
≠
−
1
{\displaystyle \int \cosh ^{n}ax\,dx={\begin{cases}{\frac {1}{an}}(\sinh ax)(\cosh ^{n-1}ax)+{\frac {n-1}{n}}\displaystyle \int \cosh ^{n-2}ax\,dx,&n>0\\-{\frac {1}{a(n+1)}}(\sinh ax)(\cosh ^{n+1}ax)+{\frac {n+2}{n+1}}\displaystyle \int \cosh ^{n+2}ax\,dx,&n<0,n\neq -1\end{cases}}}
∫
d
x
cosh
a
x
=
2
a
arctan
e
a
x
+
C
=
1
a
arctan
(
sinh
a
x
)
+
C
{\displaystyle {\begin{aligned}\int {\frac {dx}{\cosh ax}}&={\frac {2}{a}}\arctan e^{ax}+C\\&={\frac {1}{a}}\arctan(\sinh ax)+C\end{aligned}}}
∫
d
x
cosh
n
a
x
=
sinh
a
x
a
(
n
−
1
)
cosh
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
cosh
n
−
2
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
x
cosh
a
x
d
x
=
1
a
x
sinh
a
x
−
1
a
2
cosh
a
x
+
C
{\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C}
∫
x
2
cosh
a
x
d
x
=
−
2
x
cosh
a
x
a
2
+
(
x
2
a
+
2
a
3
)
sinh
a
x
+
C
{\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C}
∫
(
cosh
a
x
)
(
cosh
b
x
)
d
x
=
1
a
2
−
b
2
(
a
(
sinh
a
x
)
(
cosh
b
x
)
−
b
(
sinh
b
x
)
(
cosh
a
x
)
)
+
C
(for
a
2
≠
b
2
)
{\displaystyle \int (\cosh ax)(\cosh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh ax)(\cosh bx)-b(\sinh bx)(\cosh ax){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}
∫
d
x
1
+
cosh
(
a
x
)
=
2
a
1
1
+
e
−
a
x
+
C
{\displaystyle \int {\frac {dx}{1+\cosh(ax)}}={\frac {2}{a}}{\frac {1}{1+e^{-ax}}}+C\quad }
or
2
a
{\displaystyle {\frac {2}{a}}}
times The Logistic Function
Other integrals
Integrals of hyperbolic tangent, cotangent, secant, cosecant functions
∫
tanh
x
d
x
=
ln
cosh
x
+
C
{\displaystyle \int \tanh x\,dx=\ln \cosh x+C}
∫
tanh
2
a
x
d
x
=
x
−
tanh
a
x
a
+
C
{\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C}
∫
tanh
n
a
x
d
x
=
−
1
a
(
n
−
1
)
tanh
n
−
1
a
x
+
∫
tanh
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
coth
x
d
x
=
ln
|
sinh
x
|
+
C
,
for
x
≠
0
{\displaystyle \int \coth x\,dx=\ln |\sinh x|+C,{\text{ for }}x\neq 0}
∫
coth
n
a
x
d
x
=
−
1
a
(
n
−
1
)
coth
n
−
1
a
x
+
∫
coth
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
sech
x
d
x
=
arctan
(
sinh
x
)
+
C
{\displaystyle \int \operatorname {sech} \,x\,dx=\arctan \,(\sinh x)+C}
∫
csch
x
d
x
=
ln
|
tanh
x
2
|
+
C
=
ln
|
coth
x
−
csch
x
|
+
C
,
for
x
≠
0
{\displaystyle \int \operatorname {csch} \,x\,dx=\ln \left|\tanh {x \over 2}\right|+C=\ln \left|\coth {x}-\operatorname {csch} {x}\right|+C,{\text{ for }}x\neq 0}
Integrals involving hyperbolic sine and cosine functions
∫
(
cosh
a
x
)
(
sinh
b
x
)
d
x
=
1
a
2
−
b
2
(
a
(
sinh
a
x
)
(
sinh
b
x
)
−
b
(
cosh
a
x
)
(
cosh
b
x
)
)
+
C
(for
a
2
≠
b
2
)
{\displaystyle \int (\cosh ax)(\sinh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh ax)(\sinh bx)-b(\cosh ax)(\cosh bx){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}
∫
cosh
n
a
x
sinh
m
a
x
d
x
=
cosh
n
−
1
a
x
a
(
n
−
m
)
sinh
m
−
1
a
x
+
n
−
1
n
−
m
∫
cosh
n
−
2
a
x
sinh
m
a
x
d
x
(for
m
≠
n
)
=
−
cosh
n
+
1
a
x
a
(
m
−
1
)
sinh
m
−
1
a
x
+
n
−
m
+
2
m
−
1
∫
cosh
n
a
x
sinh
m
−
2
a
x
d
x
(for
m
≠
1
)
=
−
cosh
n
−
1
a
x
a
(
m
−
1
)
sinh
m
−
1
a
x
+
n
−
1
m
−
1
∫
cosh
n
−
2
a
x
sinh
m
−
2
a
x
d
x
(for
m
≠
1
)
{\displaystyle {\begin{aligned}\int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}\,dx&={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}\,dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\\&=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}\,dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\\&=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}\,dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\end{aligned}}}
∫
sinh
m
a
x
cosh
n
a
x
d
x
=
sinh
m
−
1
a
x
a
(
m
−
n
)
cosh
n
−
1
a
x
+
m
−
1
n
−
m
∫
sinh
m
−
2
a
x
cosh
n
a
x
d
x
(for
m
≠
n
)
=
sinh
m
+
1
a
x
a
(
n
−
1
)
cosh
n
−
1
a
x
+
m
−
n
+
2
n
−
1
∫
sinh
m
a
x
cosh
n
−
2
a
x
d
x
(for
n
≠
1
)
=
−
sinh
m
−
1
a
x
a
(
n
−
1
)
cosh
n
−
1
a
x
+
m
−
1
n
−
1
∫
sinh
m
−
2
a
x
cosh
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle {\begin{aligned}\int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}\,dx&={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}\,dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\\&={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\\&=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\end{aligned}}}
Integrals involving hyperbolic and trigonometric functions
∫
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
C
{\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C}
∫
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
+
C
{\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C}
∫
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
C
{\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C}
∫
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
+
C
{\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C}
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑