Misplaced Pages

List of linear ordinary differential equations

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "List of linear ordinary differential equations" – news · newspapers · books · scholar · JSTOR (March 2023)

This is a list of named linear ordinary differential equations.

A–Z

Name Order Equation Applications
Airy 2 d 2 y d x 2 x y = 0 {\displaystyle {\frac {d^{2}y}{dx^{2}}}-xy=0} Optics
Bessel 2 x 2 d 2 y d x 2 + x d y d x + ( x 2 α 2 ) y = 0 {\displaystyle x^{2}{\frac {d^{2}y}{dx^{2}}}+x{\frac {dy}{dx}}+\left(x^{2}-\alpha ^{2}\right)y=0} Wave propagation
Cauchy-Euler n a n x n y ( n ) ( x ) + a n 1 x n 1 y ( n 1 ) ( x ) + + a 0 y ( x ) = 0 {\displaystyle a_{n}x^{n}y^{(n)}(x)+a_{n-1}x^{n-1}y^{(n-1)}(x)+\dots +a_{0}y(x)=0}
Chebyshev 2 ( 1 x 2 ) y x y + n 2 y = 0 , ( 1 x 2 ) y 3 x y + n ( n + 2 ) y = 0 {\displaystyle (1-x^{2})y''-xy'+n^{2}y=0,\quad (1-x^{2})y''-3xy'+n(n+2)y=0} Orthogonal polynomials
Damped harmonic oscillator 2 m d 2 x d t 2 + c d x d t + k x = 0 {\displaystyle m{\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}+c{\frac {\mathrm {d} x}{\mathrm {d} t}}+kx=0} Damping
Frenet-Serret 1 d T d s = κ N , d N d s = κ T + τ B , d B d s = τ N {\displaystyle {\dfrac {\mathrm {d} \mathbf {T} }{\mathrm {d} s}}=\kappa \mathbf {N} ,\quad {\dfrac {\mathrm {d} \mathbf {N} }{\mathrm {d} s}}=-\kappa \mathbf {T} +\,\tau \mathbf {B} ,\quad {\dfrac {\mathrm {d} \mathbf {B} }{\mathrm {d} s}}=-\tau \mathbf {N} } Differential geometry
General Laguerre 2 x y + ( α + 1 x ) y + n y = 0 {\displaystyle xy''+(\alpha +1-x)y'+ny=0} Hydrogen atom
General Legendre 2 ( 1 x 2 ) d 2 d x 2 P m ( x ) 2 x d d x P m ( x ) + [ ( + 1 ) m 2 1 x 2 ] P m ( x ) = 0 {\displaystyle \left(1-x^{2}\right){\frac {d^{2}}{dx^{2}}}P_{\ell }^{m}(x)-2x{\frac {d}{dx}}P_{\ell }^{m}(x)+\leftP_{\ell }^{m}(x)=0}
Harmonic oscillator 2 m d 2 x d t 2 + k x = 0 {\displaystyle m{\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}+kx=0} Simple harmonic motion
Heun 2 d 2 w d z 2 + [ γ z + δ z 1 + ϵ z a ] d w d z + α β z q z ( z 1 ) ( z a ) w = 0 {\displaystyle {\frac {d^{2}w}{dz^{2}}}+\left{\frac {dw}{dz}}+{\frac {\alpha \beta z-q}{z(z-1)(z-a)}}w=0}
Hill 2 d 2 y d t 2 + f ( t ) y = 0 {\displaystyle {\frac {d^{2}y}{dt^{2}}}+f(t)y=0} , (f periodic) Physics
Hypergeometric 2 z ( 1 z ) d 2 w d z 2 + [ c ( a + b + 1 ) z ] d w d z a b w = 0 {\displaystyle z(1-z){\frac {d^{2}w}{dz^{2}}}+\left{\frac {dw}{dz}}-ab\,w=0}
Kummer 2 z d 2 w d z 2 + ( b z ) d w d z a w = 0 {\displaystyle z{\frac {d^{2}w}{dz^{2}}}+(b-z){\frac {dw}{dz}}-aw=0}
Laguerre 2 x y + ( 1 x ) y + n y = 0 {\displaystyle xy''+(1-x)y'+ny=0}
Legendre 2 ( 1 x 2 ) P n ( x ) 2 x P n ( x ) + n ( n + 1 ) P n ( x ) = 0 {\displaystyle (1-x^{2})P_{n}''(x)-2xP_{n}'(x)+n(n+1)P_{n}(x)=0} Orthogonal polynomials
Matrix 1 x ˙ ( t ) = A ( t ) x ( t ) {\displaystyle \mathbf {\dot {x}} (t)=\mathbf {A} (t)\mathbf {x} (t)}
Picard-Fuchs 2 d 2 y d j 2 + 1 j d y d j + 31 j 4 144 j 2 ( 1 j ) 2 y = 0 {\displaystyle {\frac {d^{2}y}{dj^{2}}}+{\frac {1}{j}}{\frac {dy}{dj}}+{\frac {31j-4}{144j^{2}(1-j)^{2}}}y=0} Elliptic curves
Riemann 2 d 2 w d z 2 + [ 1 α α z a + 1 β β z b + 1 γ γ z c ] d w d z {\displaystyle {\frac {d^{2}w}{dz^{2}}}+\left{\frac {dw}{dz}}}
+ [ α α ( a b ) ( a c ) z a + β β ( b c ) ( b a ) z b + γ γ ( c a ) ( c b ) z c ] w ( z a ) ( z b ) ( z c ) = 0 {\displaystyle +\left{\frac {w}{(z-a)(z-b)(z-c)}}=0}
Quantum harmonic oscillator 2 1 2 d 2 ψ d x 2 + 1 2 x 2 ψ = E ψ {\displaystyle -{\frac {1}{2}}{\frac {d^{2}\psi }{dx^{2}}}+{\frac {1}{2}}x^{2}\psi =E\psi } Quantum mechanics
Sturm-Liouville 2 d d x [ p ( x ) d y d x ] + q ( x ) y = λ w ( x ) y , {\displaystyle {\frac {d}{dx}}\!\!\left+q(x)y=-\lambda \,w(x)y,} Applied mathematics

See also

References

  1. Vallée, Olivier (2004). Airy functions and applications to physics. Internet Archive. Hackensack, NJ : World Scientific. p. 5. ISBN 978-1-86094-478-9.
Categories: