This is a list of the tallest mountains in the Solar System. This list includes peaks on all celestial bodies where significant mountains have been detected. For some celestial bodies, different peaks are given across different types of measurement. The solar system's tallest mountain is possibly the Olympus Mons on Mars with an altitude of 21.9 to 26 km. The central peak of Rheasilvia on the asteroid Vesta is also a candidate to be the tallest, with an estimated at up to between 20 and 25 km from peak to base.
List
Heights are given from base to peak (although a precise definition for mean base level is lacking). Peak elevations above sea level are only available on Earth, and possibly Titan. On other planets, peak elevations above an equipotential surface or a reference ellipsoid could be used if enough data is available for the calculation, but this is often not the case.
Planet | Tallest peak(s) | Base-to-peak height | % of radius | Origin | Notes |
---|---|---|---|---|---|
Mercury | Caloris Montes | ≤ 3 km (1.9 mi) | 0.12 | impact | Formed by the Caloris impact |
Venus | Skadi Mons (Maxwell Montes massif) | 6.4 km (4.0 mi) (11 km above mean) | 0.11 | tectonic | Has radar-bright slopes due to metallic Venus snow, possibly lead sulfide |
Maat Mons | 4.9 km (3.0 mi) (approx.) | 0.081 | volcanic | Highest volcano on Venus | |
Earth | Mauna Kea and Mauna Loa | 10.2 km (6.3 mi) | 0.16 | volcanic | 4.2 km (2.6 mi) of this is above sea level |
Haleakalā | 9.1 km (5.7 mi) | 0.14 | volcanic | Rises 3.1 km above sea level | |
Pico del Teide | 7.5 km (4.7 mi) | 0.12 | volcanic | Rises 3.7 km above sea level | |
Denali | 5.3 to 5.9 km (3.3 to 3.7 mi) | 0.093 | tectonic | Tallest mountain base-to-peak on land | |
Mount Everest | 3.6 to 4.6 km (2.2 to 2.9 mi) | 0.072 | tectonic | 4.6 km on north face, 3.6 km on south face; highest elevation (8.8 km) above sea level, as well as by wet and dry prominence (but not among the tallest from base to peak, and in distance to Earth's center Mt Chimborazo rises highest). | |
Moon | Mons Huygens | 5.3 km (3.3 mi) | 0.31 | impact | Formed by the Imbrium impact. |
Mons Mouton | 6 km (3.7 mi) | 0.35 | impact | Possibly formed by the South Pole-Aitken basin impact. | |
Southern Farside Mountain | 7 km (4.3 mi) | 0.40 | impact | Informal name of the Moon's tallest free-standing mountain. Possibly formed by the South Pole-Aitken basin impact. Not highest lunar peak by prominence, which would be Selenean summit. | |
Mons Hadley | 4.5 km (2.8 mi) | 0.26 | impact | Formed by the Imbrium impact | |
Mons Rümker | 1.3 km (0.81 mi) | 0.063 | volcanic | Largest volcanic construct on the Moon | |
Mars | Olympus Mons | 21.9–26 km (13.6–16.2 mi; 72,000–85,000 ft) | 0.65 | volcanic | Tallest mountain in the Solar System. Rises 26 km above northern plains, (dry prominence) 1000 km away. Summit calderas are 60 x 80 km wide, up to 3.2 km deep; scarp around margin is up to 8 km high. A shield volcano, the mean flank slope is a modest 5.2 degrees. |
Ascraeus Mons | 14.9 km (9.3 mi) | 0.44 | volcanic | Tallest of the three Tharsis Montes | |
Elysium Mons | 12.6 km (7.8 mi) | 0.37 | volcanic | Highest volcano in Elysium | |
Arsia Mons | 11.7 km (7.3 mi) | 0.35 | volcanic | Summit caldera is 108 to 138 km (67 to 86 mi) across | |
Pavonis Mons | 8.4 km (5.2 mi) | 0.25 | volcanic | Summit caldera is 4.8 km (3.0 mi) deep | |
Anseris Mons | 6.2 km (3.9 mi) | 0.18 | impact | Among the highest nonvolcanic peaks on Mars, formed by the Hellas impact | |
Aeolis Mons ("Mount Sharp") | 4.5 to 5.5 km (2.8 to 3.4 mi) | 0.16 | deposition and erosion | Formed from deposits in Gale crater; the MSL rover has been ascending it since November 2014. | |
Vesta | Rheasilvia central peak | 20–25 km (12–16 mi; 66,000–82,000 ft) | 8.4 | impact | Almost 200 km (120 mi) wide. See also: List of largest craters in the Solar System |
Ceres | Ahuna Mons | 4 km (2.5 mi) | 0.85 | cryovolcanic | Isolated steep-sided dome in relatively smooth area; max. height of ~ 5 km on steepest side; roughly antipodal to largest impact basin on Ceres |
Io | Boösaule Montes "South" | 17.5 to 18.2 km (10.9 to 11.3 mi) | 1.0 | tectonic | Has a 15 km (9 mi) high scarp on its SE margin |
Ionian Mons east ridge | 12.7 km (7.9 mi) (approx.) | 0.70 | tectonic | Has the form of a curved double ridge | |
Euboea Montes | 10.5 to 13.4 km (6.5 to 8.3 mi) | 0.74 | tectonic | A NW flank landslide left a 25,000 km debris apron | |
unnamed (245° W, 30° S) | 2.5 km (1.6 mi) (approx.) | 0.14 | volcanic | One of the tallest of Io's many volcanoes, with an atypical conical form | |
Mimas | Herschel central peak | 7 km (4 mi) (approx.) | 3.5 | impact | See also: List of largest craters in the Solar System |
Dione | Janiculum Dorsa | 1.5 km (0.9 mi) | 0.27 | tectonic | Surrounding crust depressed ca. 0.3 km. |
Titan | Mithrim Montes | ≤ 3.3 km (2.1 mi) | 0.13 | tectonic | May have formed due to global contraction |
Doom Mons | 1.45 km (0.90 mi) | 0.056 | cryovolcanic | Adjacent to Sotra Patera, a 1.7 km (1.1 mi) deep collapse feature | |
Iapetus | equatorial ridge | 20 km (12 mi) (approx.) | 2.7 | uncertain | Individual peaks have not been measured |
Oberon | unnamed ("limb mountain") | 11 km (7 mi) (approx.) | 1.4 | impact (?) | A value of 6 km was given shortly after the Voyager 2 encounter |
Pluto | Tenzing Montes, peak "T2" | ~6.2 km (3.9 mi) | 0.52 | tectonic (?) | Composed of water ice; named after Tenzing Norgay |
Piccard Mons | ~5.5 km (3.4 mi) | 0.46 | cryovolcanic (?) | ~220 km across; central depression is 11 km deep | |
Wright Mons | ~4.7 km (2.9 mi) | 0.40 | cryovolcanic (?) | ~160 km across; summit depression ~56 km across and 4.5 km deep | |
Charon | Butler Mons | ≥ 4.5 km (2.8 mi) | 0.74 | tectonic (?) | Vulcan Planitia, the southern plains, has several isolated peaks, possibly tilted crustal blocks |
Dorothy central peak | ~4.0 km (2.5 mi) | 0.66 | impact | North polar impact basin Dorothy, Charon's largest, is ~240 km across and 6 km deep | |
2002 MS4 | unnamed | 20–29 km (12–18 mi) | 6.3 | ? | Discovered by stellar occultation; it is unclear whether this feature may be a genuine topographic peak or a transiting/occulting satellite. |
Tallest mountains by elevation
- Olympus Mons 72,000 ft (22,000 m)
- Equatorial Ridge 65,617 ft (20,000 m)
- Boösaule Mons 59,711 ft (18,200 m)
- Ascraeus Mons 49,000 ft (15,000 m)
- Ionian Mons 41,667 ft (12,700 m)
- Elysium Mons 41,338 ft (12,600 m)
- Arsia Mons 38,386 ft (11,700 m)
- Limb Mountain 36,089 ft (11,000 m)
- Skadi Mons 35,105 ft (10,700 m)
- Euboea Montes 34,449 ft (10,500 m)
- Mount Everest 29,029 ft (8,848 m)
- Herschel Peak 22,966 ft (7,000 m)
- Anseris Mons 20,341 ft (6,200 m)
- Tenzing Montes 20,341 ft (6,200 m)
- Denali 20,310 ft (6,190 m)
- Mount Kilimanjaro 19,341 ft (5,895 m)
- Mons Huygens 18,045 ft (5,500 m)
- Aeolis Mons 18,045 ft (5,500 m)
- Piccard Mons 18,045 ft (5,500 m)
- Maat Mons 16,076 ft (4,900 m)
- Wright Mons 15,420 ft (4,700 m)
- Mons Hadley 14,764 ft (4,500 m)
- Butler Mons 14,764 ft (4,500 m)
- Mauna Kea 13,803 ft (4,207 m)
- Ahuna Mons 13,500 ft (4,100 m)
- Dorothy Peak 13,123 ft (4,000 m)
- Mithrim Montes 10,948 ft (3,337 m)
- Haleakala 10,023 ft (3,055 m)
- Caloris Montes 9,843 ft (3,000 m)
- Io (unnamed peak) 8,202 ft (2,500 m)
- Janiculum Dorsa 4,921 ft (1,500 m)
- Doom Mons 4,757 ft (1,450 m)
- Mons Rümker 4,265 ft (1,300 m)
Gallery
The following images are shown in order of decreasing base-to-peak height.
- Olympus Mons on Mars as viewed from Viking 1 in 1978
- Cassini image of Iapetus's equatorial ridge
- Voyager 1 photo of Io's highest peak, Boösaule Montes "South"
- Ascraeus Mons (THEMIS IR with MOLA altimetry, 3x vertical stretch), Mars
- Io's Euboea Montes (below top left), Haemus Montes (lower right); north is left
- Mauna Kea (from Mauna Loa), Hawaii
- Teide, Canary Islands
- Cassini photo of Herschel crater on Mimas and its central peak
- Magellan SAR image of Skadi Mons in Venus's Maxwell Montes
- Denali (Mount McKinley), Alaska
- Aeolis Mons ("Mount Sharp"), Mars (as viewed by the rover Curiosity on 6 August 2012).
- Maat Mons, Venus (radar imaging plus altimetry, 10x vertical exaggeration)
- The Moon's Mons Hadley, near the Apollo 15 landing site (1971)
- Mount Everest (Sagarmāthā/ Chomolungma), Nepal/Tibet
- Ahuna Mons on Ceres, imaged by Dawn from LAMO
- Pluto's possible cryovolcano Wright Mons, showing its central depression
- New Horizons view of Pluto's Tenzing Montes in the left foreground (also in preceding image) and Hillary Montes on the horizon
- Cassini SAR image of Titan's Mithrim Montes, showing three parallel ridges
- Radar-generated view of Titan's cryovolcanic Doom Mons and Sotra Patera (10x vertical stretch)
See also
- List of extraterrestrial volcanoes
- List of highest mountains on Earth
- List of Solar System extremes
- List of mountains on Mars
- Mons (planetary nomenclature)
- Topographic prominence
Notes
- 100 × ratio of peak height to radius of the parent world
- On Earth, mountain heights are constrained by glaciation; peaks are usually limited to elevations not more than 1500 m above the snow line (which varies with latitude). Exceptions to this trend tend to be rapidly forming volcanoes.
- On p. 20 of Helman (2005): "the base to peak rise of Mount McKinley is the largest of any mountain that lies entirely above sea level, some 18,000 ft (5,500 m)"
- Peak is 8.8 km (5.5 mi) above sea level, and over 13 km (8.1 mi) above the oceanic abyssal plain.
- Prominences in crater rims are not typically viewed as peaks and have not been listed here. A notable example is an (officially) unnamed massif on the rim of the farside crater Zeeman that rises about 4.0 km above adjacent parts of the rim and about 7.57 km above the crater floor. The formation of the massif does not appear to be explainable simply on the basis of the impact event.
- Due to limitations in the accuracy of the measurements and the lack of a precise definition of "base", it is difficult to say whether this peak or the central peak of Vesta's crater Rheasilvia is the tallest mountain in the Solar System.
- About 5.25 km (3.26 mi) high from the perspective of the landing site of Curiosity.
- A crater central peak may sit below the mound of sediment. If that sediment was deposited while the crater was flooded, the crater may have once been entirely filled before erosional processes gained the upper hand. However, if the deposition was due to katabatic winds that descend the crater walls, as suggested by reported 3 degree radial slopes of the mound's layers, the role of erosion would have been to place an upper limit on the mound's growth. Gravity measurements by Curiosity suggest the crater was never buried by sediment, consistent with the latter scenario.
- Due to limitations in the accuracy of the measurements and the lack of a precise definition of "base", it is difficult to say whether this peak or the volcano Olympus Mons on Mars is the tallest mountain in the Solar System.
- Among the Solar System's largest
- Some of Io's paterae are surrounded by radial patterns of lava flows, indicating they are on a topographic high point, making them shield volcanoes. Most of these volcanoes exhibit relief of less than 1 km. A few have more relief; Ruwa Patera rises 2.5 to 3 km over its 300 km width. However, its slopes are only on the order of a degree. A handful of Io's smaller shield volcanoes have steeper, conical profiles; the example listed is 60 km across and has slopes averaging 4° and reaching 6-7° approaching the small summit depression.
- Was apparently formed via contraction.
- Hypotheses of origin include crustal readjustment associated with a decrease in oblateness due to tidal locking, and deposition of deorbiting material from a former ring around the moon.
- A linearized wide-angle hazcam image that makes the mountain look steeper than it actually is. The highest peak is not visible in this view.
References
- Hayes, A.G.; Birch, S.P.D.; Dietrich, W.E.; Howard, A.D.; Kirk, R.L.; Poggiali, V.; Mastrogiuseppe, M.; Michaelides, R.J.; Corlies, P.M.; Moore, J.M.; Malaska, M.J.; Mitchell, K.L.; Lorenz, R.D.; Wood, C.A. (2017). "Topographic Constraints on the Evolution and Connectivity of Titan's Lacustrine Basins". Geophysical Research Letters. 44 (23): 11, 745–11, 753. Bibcode:2017GeoRL..4411745H. doi:10.1002/2017GL075468. hdl:11573/1560393.
- "Surface". MESSENGER web site. Johns Hopkins University/Applied Physics Lab. Archived from the original on 30 September 2016. Retrieved 4 April 2012.
- Oberst, J.; Preusker, F.; Phillips, R. J.; Watters, T. R.; Head, J. W.; Zuber, M. T.; Solomon, S. C. (2010). "The morphology of Mercury's Caloris basin as seen in MESSENGER stereo topographic models". Icarus. 209 (1): 230–238. Bibcode:2010Icar..209..230O. doi:10.1016/j.icarus.2010.03.009. ISSN 0019-1035.
- Fassett, C. I.; Head, J. W.; Blewett, D. T.; Chapman, C. R.; Dickson, J. L.; Murchie, S. L.; Solomon, S. C.; Watters, T. R. (2009). "Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits". Earth and Planetary Science Letters. 285 (3–4): 297–308. Bibcode:2009E&PSL.285..297F. doi:10.1016/j.epsl.2009.05.022. ISSN 0012-821X.
- Jones, Tom; Stofan, Ellen (2008). Planetology : Unlocking the secrets of the solar system. Washington, D.C.: National Geographic Society. p. 74. ISBN 978-1-4262-0121-9. Archived from the original on 16 July 2017. Retrieved 25 October 2016.
- Keep, M.; Hansen, V. L. (1994). "Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation". Journal of Geophysical Research. 99 (E12): 26015. Bibcode:1994JGR....9926015K. doi:10.1029/94JE02636. ISSN 0148-0227.
- Otten, Carolyn Jones (10 February 2004). "'Heavy metal' snow on Venus is lead sulfide". Newsroom. Washington University in St. Louis. Archived from the original on 29 January 2016. Retrieved 10 December 2012.
- "PIA00106: Venus - 3D Perspective View of Maat Mons". Planetary Photojournal. Jet Propulsion Lab. 1 August 1996. Archived from the original on 8 March 2016. Retrieved 30 June 2012.
- Robinson, C. A.; Thornhill, G. D.; Parfitt, E. A. (January 1995). "Large-scale volcanic activity at Maat Mons: Can this explain fluctuations in atmospheric chemistry observed by Pioneer Venus?". Journal of Geophysical Research. 100 (E6): 11755–11764. Bibcode:1995JGR...10011755R. doi:10.1029/95JE00147. Archived from the original on 1 March 2012. Retrieved 11 February 2013.
- Egholm, D. L.; Nielsen, S. B.; Pedersen, V. K.; Lesemann, J.-E. (2009). "Glacial effects limiting mountain height". Nature. 460 (7257): 884–887. Bibcode:2009Natur.460..884E. doi:10.1038/nature08263. PMID 19675651. S2CID 205217746.
- "Mountains: Highest Points on Earth". National Geographic Society. Archived from the original on 6 March 2012. Retrieved 19 September 2010.
- ^ "Haleakala National Park Geology Fieldnotes". U.S. National Park Service. Archived from the original on 2 February 2017. Retrieved 31 January 2017.
- ^ "Teide National Park". UNESCO World Heritage Site list. UNESCO. Archived from the original on 12 June 2022. Retrieved 2 June 2013.
- "NOVA Online: Surviving Denali, The Mission". NOVA web site. Public Broadcasting Corporation. 2000. Archived from the original on 20 November 2010. Retrieved 7 June 2007.
- Adam Helman (2005). The Finest Peaks: Prominence and Other Mountain Measures. Trafford Publishing. ISBN 978-1-4120-5995-4. Archived from the original on 31 October 2020. Retrieved 9 December 2012.
- Mount Everest (1:50,000 scale map), prepared under the direction of Bradford Washburn for the Boston Museum of Science, the Swiss Foundation for Alpine Research, and the National Geographic Society, 1991, ISBN 3-85515-105-9
- Robinson, M. (20 November 2017). "Mountains of the Moon: Zeeman Mons". LROC.sese.asu. Arizona State University. Archived from the original on 12 November 2021. Retrieved 5 September 2020.
- Ruefer, A.C.; James, P.B. (March 2020). Zeeman Crater's Anomalous Massif (PDF). 51st Lunar and Planetary Science Conference. p. 2673. Bibcode:2020LPI....51.2673R. Archived (PDF) from the original on 9 September 2021. Retrieved 5 September 2020.
- ^ The Moon's Highs and Lows
- Fred W. Price (1988). The Moon observer's handbook. London: Cambridge University Press. ISBN 978-0-521-33500-3.
- Moore, Patrick (2001). On the Moon. London: Cassell & Co. ISBN 9780304354696.
- ^ Wöhler, C.; Lena, R.; Pau, K. C. (16 March 2007). The Lunar Dome Complex Mons Rümker: Morphometry, Rheology, and Mode of Emplacement. 38th Lunar and Planetary Science Conference. p. 1091. Bibcode:2007LPI....38.1091W.
- Neil F. Comins (2012). Discovering the Essential Universe. W. H. Freeman. p. 148. ISBN 978-1-4292-5519-6.
- ^ Plescia, J. B. (2004). "Morphometric properties of Martian volcanoes". Journal of Geophysical Research. 109 (E3): E03003. Bibcode:2004JGRE..109.3003P. doi:10.1029/2002JE002031. ISSN 0148-0227.
- ^ Carr, Michael H. (11 January 2007). The Surface of Mars. Cambridge University Press. p. 51. ISBN 978-1-139-46124-5. Archived from the original on 24 June 2021. Retrieved 25 October 2016.
- Comins, Neil F. (4 January 2012). Discovering the Essential Universe. Macmillan. ISBN 978-1-4292-5519-6. Archived from the original on 9 November 2021. Retrieved 23 December 2012.
- Lopes, R.; Guest, J. E.; Hiller, K.; Neukum, G. (January 1982). "Further evidence for a mass movement origin of the Olympus Mons aureole". Journal of Geophysical Research. 87 (B12): 9917–9928. Bibcode:1982JGR....87.9917L. doi:10.1029/JB087iB12p09917.
- JMARS MOLA elevation dataset. Christensen, P.; Gorelick, N.; Anwar, S.; Dickenshied, S.; Edwards, C.; Engle, E. (2007) "New Insights About Mars From the Creation and Analysis of Mars Global Datasets Archived 5 October 2018 at the Wayback Machine;" American Geophysical Union, Fall Meeting, abstract #P11E-01.
- ^ "Gale Crater's History Book". Mars Odyssey THEMIS web site. Arizona State University. Archived from the original on 4 November 2008. Retrieved 7 December 2012.
- Anderson, R. B.; Bell III, J. F. (2010). "Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site". International Journal of Mars Science and Exploration. 5: 76–128. Bibcode:2010IJMSE...5...76A. doi:10.1555/mars.2010.0004.
- Wall, M. (6 May 2013). "Bizarre Mars Mountain Possibly Built by Wind, Not Water". Space.com. Archived from the original on 7 November 2016. Retrieved 13 May 2013.
- Kite, E. S.; Lewis, K. W.; Lamb, M. P.; Newman, C. E.; Richardson, M. I. (2013). "Growth and form of the mound in Gale Crater, Mars: Slope wind enhanced erosion and transport". Geology. 41 (5): 543–546. arXiv:1205.6840. Bibcode:2013Geo....41..543K. doi:10.1130/G33909.1. ISSN 0091-7613. S2CID 119249853.
- Lewis, K. W.; Peters, S.; Gonter, K.; Morrison, S.; Schmerr, N.; Vasavada, A. R.; Gabriel, T. (2019). "A surface gravity traverse on Mars indicates low bedrock density at Gale crater". Science. 363 (6426): 535–537. Bibcode:2019Sci...363..535L. doi:10.1126/science.aat0738. PMID 30705193. S2CID 59567599.
- Agle, D. C. (28 March 2012). "'Mount Sharp' On Mars Links Geology's Past and Future". NASA. Archived from the original on 6 March 2017. Retrieved 31 March 2012.
- Webster, Gay; Brown, Dwayne (9 November 2014). "Curiosity Arrives at Mount Sharp". NASA Jet Propulsion Laboratory. Archived from the original on 2 December 2014. Retrieved 16 October 2016.
- Vega, P. (11 October 2011). "New View of Vesta Mountain From NASA's Dawn Mission". Jet Propulsion Lab's Dawn mission web site. NASA. Archived from the original on 22 October 2011. Retrieved 29 March 2012.
- Schenk, P.; Marchi, S.; O'Brien, D. P.; Buczkowski, D.; Jaumann, R.; Yingst, A.; McCord, T.; Gaskell, R.; Roatsch, T.; Keller, H. E.; Raymond, C.A.; Russell, C. T. (1 March 2012). "Mega-Impacts into Planetary Bodies: Global Effects of the Giant Rheasilvia Impact Basin on Vesta". 43rd Lunar and Planetary Science Conference. Lunar and Planetary Science Conference. No. 1659. p. 2757. Bibcode:2012LPI....43.2757S. contribution 1659, id.2757.
- "Dawn's First Year at Ceres: A Mountain Emerges". JPL Dawn website. Jet Propulsion Lab. 7 March 2016. Archived from the original on 8 March 2016. Retrieved 8 March 2016.
- Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L. A.; Castillo-Rogez, J. C.; Quick, L. C.; Byrne, S.; Preusker, F.; OBrien, D. P.; Schmedemann, N.; Williams, D. A.; Li, J.- Y.; Bland, M. T.; Hiesinger, H.; Kneissl, T.; Neesemann, A.; Schaefer, M.; Pasckert, J. H.; Schmidt, B. E.; Buczkowski, D. L.; Sykes, M. V.; Nathues, A.; Roatsch, T.; Hoffmann, M.; Raymond, C. A.; Russell, C. T. (2 September 2016). "Cryovolcanism on Ceres". Science. 353 (6303): aaf4286. Bibcode:2016Sci...353.4286R. doi:10.1126/science.aaf4286. PMID 27701087.
- Perry, Jason (27 January 2009). "Boösaule Montes". Gish Bar Times blog. Archived from the original on 23 March 2016. Retrieved 30 June 2012.
- Schenk, P.; Hargitai, H. "Boösaule Montes". Io Mountain Database. Archived from the original on 4 March 2016. Retrieved 30 June 2012.
- ^ Schenk, P.; Hargitai, H.; Wilson, R.; McEwen, A.; Thomas, P. (2001). "The mountains of Io: Global and geological perspectives from Voyager and Galileo". Journal of Geophysical Research. 106 (E12): 33201. Bibcode:2001JGR...10633201S. doi:10.1029/2000JE001408. ISSN 0148-0227.
- Schenk, P.; Hargitai, H. "Ionian Mons". Io Mountain Database. Archived from the original on 4 March 2016. Retrieved 30 June 2012.
- Schenk, P.; Hargitai, H. "Euboea Montes". Io Mountain Database. Archived from the original on 4 March 2016. Retrieved 30 June 2012.
- ^ Martel, L. M. V. (16 February 2011). "Big Mountain, Big Landslide on Jupiter's Moon, Io". NASA Solar System Exploration web site. Archived from the original on 13 January 2011. Retrieved 30 June 2012.
- Moore, J. M.; McEwen, A. S.; Albin, E. F.; Greeley, R. (1986). "Topographic evidence for shield volcanism on Io". Icarus. 67 (1): 181–183. Bibcode:1986Icar...67..181M. doi:10.1016/0019-1035(86)90183-1. ISSN 0019-1035.
- ^ Schenk, P.; Hargitai, H. "Unnamed volcanic mountain". Io Mountain Database. Archived from the original on 4 March 2016. Retrieved 6 December 2012.
- ^ Schenk, P. M.; Wilson, R. R.; Davies, R. G. (2004). "Shield volcano topography and the rheology of lava flows on Io". Icarus. 169 (1): 98–110. Bibcode:2004Icar..169...98S. doi:10.1016/j.icarus.2004.01.015.
- ^ Moore, Jeffrey M.; Schenk, Paul M.; Bruesch, Lindsey S.; Asphaug, Erik; McKinnon, William B. (October 2004). "Large impact features on middle-sized icy satellites" (PDF). Icarus. 171 (2): 421–443. Bibcode:2004Icar..171..421M. doi:10.1016/j.icarus.2004.05.009. Archived (PDF) from the original on 2 October 2018. Retrieved 4 September 2015.
- Hammond, N. P.; Phillips, C. B.; Nimmo, F.; Kattenhorn, S. A. (March 2013). "Flexure on Dione: Investigating subsurface structure and thermal history". Icarus. 223 (1): 418–422. Bibcode:2013Icar..223..418H. doi:10.1016/j.icarus.2012.12.021.
- Beddingfield, C. B.; Emery, J. P.; Burr, D. M. (March 2013). "Testing for a Contractional Origin of Janiculum Dorsa on the Northern, Leading Hemisphere of Saturn's Moon Dione". 44th Lunar and Planetary Science Conference, LPI Contribution No. 1719. Lunar and Planetary Science Conference. p. 1301. Bibcode:2013LPI....44.1301B.
- Overlooked Ocean Worlds Fill the Outer Solar System Archived 26 December 2018 at the Wayback Machine. John Wenz, Scientific American. 4 October 2017.
- ^ "PIA20023: Radar View of Titan's Tallest Mountains". Photojournal.jpl.nasa.gov. Jet Propulsion Laboratory. 24 March 2016. Archived from the original on 25 August 2017. Retrieved 25 March 2016.
- Mitri, G.; Bland, M. T.; Showman, A. P.; Radebaugh, J.; Stiles, B.; Lopes, R. M. C.; Lunine, Jonathan I.; Pappalardo, R. T. (2010). "Mountains on Titan: Modeling and observations". Journal of Geophysical Research. 115 (E10002): E10002. Bibcode:2010JGRE..11510002M. doi:10.1029/2010JE003592. Archived from the original on 26 January 2020. Retrieved 5 July 2012.
- ^ Lopes, R. M. C.; Kirk, R. L.; Mitchell, K. L.; LeGall, A.; Barnes, J. W.; Hayes, A.; Kargel, J.; Wye, L.; Radebaugh, J.; Stofan, E. R.; Janssen, M. A.; Neish, C. D.; Wall, S. D.; Wood, C. A.; Lunine, Jonathan I.; Malaska, M. J. (19 March 2013). "Cryovolcanism on Titan: New results from Cassini RADAR and VIMS" (PDF). Journal of Geophysical Research: Planets. 118 (3): 416. Bibcode:2013JGRE..118..416L. doi:10.1002/jgre.20062. Archived (PDF) from the original on 1 September 2019. Retrieved 1 September 2019.
- Giese, B.; Denk, T.; Neukum, G.; Roatsch, T.; Helfenstein, P.; Thomas, P. C.; Turtle, E. P.; McEwen, A.; Porco, C. C. (2008). "The topography of Iapetus' leading side" (PDF). Icarus. 193 (2): 359–371. Bibcode:2008Icar..193..359G. doi:10.1016/j.icarus.2007.06.005. ISSN 0019-1035. Archived from the original on 13 March 2020. Retrieved 9 December 2012.
- Porco, C. C.; et al. (2005). "Cassini Imaging Science: Initial Results on Phoebe and Iapetus" (PDF). Science. 307 (5713): 1237–1242. Bibcode:2005Sci...307.1237P. doi:10.1126/science.1107981. ISSN 0036-8075. PMID 15731440. S2CID 20749556. 2005Sci...307.1237P. Archived (PDF) from the original on 19 July 2018. Retrieved 13 January 2019.
- Kerr, Richard A. (6 January 2006). "How Saturn's Icy Moons Get a (Geologic) Life". Science. 311 (5757): 29. doi:10.1126/science.311.5757.29. PMID 16400121. S2CID 28074320.
- Ip, W.-H. (2006). "On a ring origin of the equatorial ridge of Iapetus" (PDF). Geophysical Research Letters. 33 (16): L16203. Bibcode:2006GeoRL..3316203I. doi:10.1029/2005GL025386. ISSN 0094-8276. Archived (PDF) from the original on 26 June 2019. Retrieved 9 December 2012.
- Moore, P.; Henbest, N. (April 1986). "Uranus - the View from Voyager". Journal of the British Astronomical Association. 96 (3): 131–137. Bibcode:1986JBAA...96..131M.
- ^ Schenk, P. M.; Beyer, R. A.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; White, O. L.; Singer, K.; Nimmo, F.; Thomason, C.; Lauer, T. R.; Robbins, S.; Umurhan, O. M.; Grundy, W. M.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Smith, K. E.; Olkin, C. (2018). "Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons". Icarus. 314: 400–433. Bibcode:2018Icar..314..400S. doi:10.1016/j.icarus.2018.06.008. S2CID 126273376.
- ^ Hand, E.; Kerr, R. (15 July 2015). "Pluto is alive—but where is the heat coming from?". Science. doi:10.1126/science.aac8860.
- Pokhrel, Rajan (19 July 2015). "Nepal's mountaineering fraternity happy over Pluto mountains named after Tenzing Norgay Sherpa - Nepal's First Landmark In The Solar System". The Himalayan Times. Archived from the original on 13 August 2015. Retrieved 19 July 2015.
- ^ "At Pluto, New Horizons Finds Geology of All Ages, Possible Ice Volcanoes, Insight into Planetary Origins". New Horizons News Center. The Johns Hopkins University Applied Physics Laboratory LLC. 9 November 2015. Archived from the original on 10 November 2015. Retrieved 9 November 2015.
- ^ Witze, A. (9 November 2015). "Icy volcanoes may dot Pluto's surface". Nature. doi:10.1038/nature.2015.18756. S2CID 182698872. Archived from the original on 10 November 2015. Retrieved 9 November 2015.
- "Ice Volcanoes and Topography". New Horizons Multimedia. The Johns Hopkins University Applied Physics Laboratory LLC. 9 November 2015. Archived from the original on 13 November 2015. Retrieved 9 November 2015.
- "Ice Volcanoes on Pluto?". New Horizons Multimedia. The Johns Hopkins University Applied Physics Laboratory LLC. 9 November 2015. Archived from the original on 11 September 2017. Retrieved 9 November 2015.
- ^ Schenk, P. M.; Beyer, R. A.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; White, O. L.; Singer, K.; Umurhan, O. M.; Nimmo, F.; Lauer, T. R.; Grundy, W. M.; Robbins, S.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Smith, K. E.; Olkin, C. (2018). "Breaking up is hard to do: Global cartography and topography of Pluto's mid-sized icy Moon Charon from New Horizons". Icarus. 315: 124–145. Bibcode:2018Icar..315..124S. doi:10.1016/j.icarus.2018.06.010. S2CID 125833113.
- Rommel, F. L.; Braga-Ribas, F.; Ortiz, J. L.; Sicardy, B.; Santos-Sanz, P.; Desmars, J.; et al. (August 2023). "A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4 measured from stellar occultations". Astronomy & Astrophysics. 678: A167. arXiv:2308.08062. doi:10.1051/0004-6361/202346892.
External links
- 3-D anaglyphs of Rheasilvia's central peak at photojournal.jpl.nasa.gov: top view and side view
- Color views of Rheasilvia's central peak at Planetary.org: side view (peak is at upper right) and mosaic of Vesta's southern hemisphere
- Color panorama of Aeolis Mons from 21 September 2012 (smaller color-balanced view here)
- Color view of Aeolis Mons by Seán Doran
- High resolution video of overflight of lower slopes of Aeolis Mons by Seán Doran
- Gigapixel panorama of the Mount Everest area Archived 31 August 2016 at the Wayback Machine by David Breashears
Solar System | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||
Lists | |||||||||||||||||||||||||
Hypothetical | |||||||||||||||||||||||||
See also: Formation and evolution of the Solar System, list of the Solar System's objects by discovery date, by orbit, and by radius or mass, and the Solar System Portal |