Misplaced Pages

Log-space reduction

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Logspace reduction) Type of computational algorithm
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Log-space reduction" – news · newspapers · books · scholar · JSTOR (April 2009) (Learn how and when to remove this message)

In computational complexity theory, a log-space reduction is a reduction computable by a deterministic Turing machine using logarithmic space. Conceptually, this means it can keep a constant number of pointers into the input, along with a logarithmic number of fixed-size integers. It is possible that such a machine may not have space to write down its own output, so the only requirement is that any given bit of the output be computable in log-space. Formally, this reduction is executed via a log-space transducer.

Such a machine has polynomially-many configurations, so log-space reductions are also polynomial-time reductions. However, log-space reductions are probably weaker than polynomial-time reductions; while any non-empty, non-full language in P is polynomial-time reducible to any other non-empty, non-full language in P, a log-space reduction from an NL-complete language to a language in L, both of which would be languages in P, would imply the unlikely L = NL. It is an open question if the NP-complete problems are different with respect to log-space and polynomial-time reductions.

Log-space reductions are normally used on languages in P, in which case it usually does not matter whether many-one reductions or Turing reductions are used, since it has been verified that L, SL, NL, and P are all closed under Turing reductions, meaning that Turing reductions can be used to show a problem is in any of these classes. However, other subclasses of P such as NC may not be closed under Turing reductions, and so many-one reductions must be used.

Just as polynomial-time reductions are useless within P and its subclasses, log-space reductions are useless to distinguish problems in L and its subclasses; in particular, every non-empty, non-full problem in L is trivially L-complete under log-space reductions. While even weaker reductions exist, they are not often used in practice, because complexity classes smaller than L (that is, strictly contained or thought to be strictly contained in L) receive relatively little attention.

The tools available to designers of log-space reductions have been greatly expanded by the result that L = SL; see SL for a list of some SL-complete problems that can now be used as subroutines in log-space reductions.

Notes

  1. Arora & Barak (2009) p. 88

References

Further reading


P ≟ NP 

This theoretical computer science–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: