Misplaced Pages

Markup rule

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A markup rule is the pricing practice of a producer with market power, where a firm charges a fixed mark-up over its marginal cost.

Derivation of the markup rule

Mathematically, the markup rule can be derived for a firm with price-setting power by maximizing the following expression for profit:

π = P ( Q ) Q C ( Q ) {\displaystyle \pi =P(Q)\cdot Q-C(Q)}
where
Q = quantity sold,
P(Q) = inverse demand function, and thereby the price at which Q can be sold given the existing demand
C(Q) = total cost of producing Q.
π {\displaystyle \pi } = economic profit

Profit maximization means that the derivative of π {\displaystyle \pi } with respect to Q is set equal to 0:

P ( Q ) Q + P C ( Q ) = 0 {\displaystyle P'(Q)\cdot Q+P-C'(Q)=0}
where
P'(Q) = the derivative of the inverse demand function.
C'(Q) = marginal cost–the derivative of total cost with respect to output.

This yields:

P ( Q ) Q + P = C ( Q ) {\displaystyle P'(Q)\cdot Q+P=C'(Q)}

or "marginal revenue" = "marginal cost".

A firm with market power will set a price and production quantity such that marginal cost equals marginal revenue. A competitive firm's marginal revenue is the price it gets for its product, and so it will equate marginal cost to price.
P ( P ( Q ) Q / P + 1 ) = M C {\displaystyle P\cdot (P'(Q)\cdot Q/P+1)=MC}

By definition P ( Q ) Q / P {\displaystyle P'(Q)\cdot Q/P} is the reciprocal of the price elasticity of demand (or 1 / ϵ {\displaystyle 1/\epsilon } ). Hence

P ( 1 + 1 / ϵ ) = P ( 1 + ϵ ϵ ) = M C {\displaystyle P\cdot (1+1/{\epsilon })=P\cdot \left({\frac {1+\epsilon }{\epsilon }}\right)=MC}

Letting η {\displaystyle \eta } be the reciprocal of the price elasticity of demand,

P = ( 1 1 + η ) M C {\displaystyle P=\left({\frac {1}{1+\eta }}\right)\cdot MC}

Thus a firm with market power chooses the output quantity at which the corresponding price satisfies this rule. Since for a price-setting firm η < 0 {\displaystyle \eta <0} this means that a firm with market power will charge a price above marginal cost and thus earn a monopoly rent. On the other hand, a competitive firm by definition faces a perfectly elastic demand; hence it has η = 0 {\displaystyle \eta =0} which means that it sets the quantity such that marginal cost equals the price.

The rule also implies that, absent menu costs, a firm with market power will never choose a point on the inelastic portion of its demand curve (where ϵ 1 {\displaystyle \epsilon \geq -1} and η 1 {\displaystyle \eta \leq -1} ). Intuitively, this is because starting from such a point, a reduction in quantity and the associated increase in price along the demand curve would yield both an increase in revenues (because demand is inelastic at the starting point) and a decrease in costs (because output has decreased); thus the original point was not profit-maximizing.

References

  1. Roger LeRoy Miller, Intermediate Microeconomics Theory Issues Applications, Third Edition, New York: McGraw-Hill, Inc, 1982.
  2. Tirole, Jean, "The Theory of Industrial Organization", Cambridge, Massachusetts: The MIT Press, 1988.
Category: