Misplaced Pages

Hall's conjecture

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Marshall Hall's conjecture) Unsolved problem in mathematics

In mathematics, Hall's conjecture is an open question on the differences between perfect squares and perfect cubes. It asserts that a perfect square y and a perfect cube x that are not equal must lie a substantial distance apart. This question arose from consideration of the Mordell equation in the theory of integer points on elliptic curves.

The original version of Hall's conjecture, formulated by Marshall Hall, Jr. in 1970, says that there is a positive constant C such that for any integers x and y for which yx,

| y 2 x 3 | > C | x | . {\displaystyle |y^{2}-x^{3}|>C{\sqrt {|x|}}.}

Hall suggested that perhaps C could be taken as 1/5, which was consistent with all the data known at the time the conjecture was proposed. Danilov showed in 1982 that the exponent 1/2 on the right side (that is, the use of |x|) cannot be replaced by any higher power: for no δ > 0 is there a constant C such that |yx| > C|x| whenever yx.

In 1965, Davenport proved an analogue of the above conjecture in the case of polynomials: if f(t) and g(t) are nonzero polynomials over the complex numbers C such that g(t) ≠ f(t) in C, then

deg ( g ( t ) 2 f ( t ) 3 ) 1 2 deg f ( t ) + 1. {\displaystyle \deg(g(t)^{2}-f(t)^{3})\geq {\frac {1}{2}}\deg f(t)+1.}

The weak form of Hall's conjecture, stated by Stark and Trotter around 1980, replaces the square root on the right side of the inequality by any exponent less than 1/2: for any ε > 0, there is some constant c(ε) depending on ε such that for any integers x and y for which yx,

| y 2 x 3 | > c ( ε ) x 1 / 2 ε . {\displaystyle |y^{2}-x^{3}|>c(\varepsilon )x^{1/2-\varepsilon }.}

The original, strong, form of the conjecture with exponent 1/2 has never been disproved, although it is no longer believed to be true and the term Hall's conjecture now generally means the version with the ε in it. For example, in 1998, Noam Elkies found the example

447884928428402042307918 − 5853886516781223 = -1641843,

for which compatibility with Hall's conjecture would require C to be less than .0214 ≈ 1/50, so roughly 10 times smaller than the original choice of 1/5 that Hall suggested.

The weak form of Hall's conjecture would follow from the ABC conjecture. A generalization to other perfect powers is Pillai's conjecture, though it is also known that Pillai's conjecture would be true if Hall's conjecture held for any specific 0 < ε < 1/2.

The table below displays the known cases with r = x / | y 2 x 3 | > 1 {\displaystyle r={\sqrt {x}}/|y^{2}-x^{3}|>1} . Note that y can be computed as the nearest integer to x. This list is known to contain all examples with x 10 29 {\displaystyle x\leq 10^{29}} (the first 44 entries in the table) but may be incomplete past that point.

# x r
1 2 1.41
2 5234 4.26
3 8158 3.76
4 93844 1.03
5 367806 2.93
6 421351 1.05
7 720114 3.77
8 939787 3.16
9 28187351 4.87
10 110781386 1.23
11 154319269 1.08
12 384242766 1.34
13 390620082 1.33
14 3790689201 2.20
15 65589428378 2.19
16 952764389446 1.15
17 12438517260105 1.27
18 35495694227489 1.15
19 53197086958290 1.66
20 5853886516781223 46.60
21 12813608766102806 1.30
22 23415546067124892 1.46
23 38115991067861271 6.50
24 322001299796379844 1.04
25 471477085999389882 1.38
26 810574762403977064 4.66
27 9870884617163518770 1.90
28 42532374580189966073 3.47
29 44648329463517920535 1.79
30 51698891432429706382 1.75
31 231411667627225650649 3.71
32 601724682280310364065 1.88
33 4996798823245299750533 2.17
34 5592930378182848874404 1.38
35 14038790674256691230847 1.27
36 77148032713960680268604 10.18
37 180179004295105849668818 5.65
38 372193377967238474960883 1.33
39 664947779818324205678136 16.53
40 2028871373185892500636155 1.14
41 10747835083471081268825856 1.35
42 37223900078734215181946587 1.38
43 69586951610485633367491417 1.22
44 3690445383173227306376634720 1.51
45 133545763574262054617147641349 1.69
46 162921297743817207342396140787 10.65
47 374192690896219210878121645171 2.97
48 401844774500818781164623821177 1.29
49 500859224588646106403669009291 1.06
50 1114592308630995805123571151844 1.04
51 39739590925054773507790363346813 3.75
52 862611143810724763613366116643858 1.10
53 1062521751024771376590062279975859 1.006
54 6078673043126084065007902175846955 1.03
  1. ^ J. Gebel, A. Pethö and H.G. Zimmer.
  2. ^ Noam D. Elkies (including entry 16 which Elkies found but omitted from his published table).
  3. ^ I. Jiménez Calvo, J. Herranz and G. Sáez (with the order of entries 29 and 30 corrected)
  4. ^ Johan Bosman (using the software of JHS).
  5. ^ S. Aanderaa, L. Kristiansen and H.K. Ruud.
  6. L.V. Danilov. Item 50 belongs to the infinite sequence found by Danilov.

References

  1. Schmidt, Wolfgang M. (1996). Diophantine approximations and Diophantine equations. Lecture Notes in Mathematics. Vol. 1467 (2nd ed.). Springer-Verlag. pp. 205–206. ISBN 3-540-54058-X. Zbl 0754.11020.
  2. Nair, M (1 December 1977). "A NOTE ON THE EQUATION x^3−y^2=k". The Quarterly Journal of Mathematics. 29 (4): 483–487. doi:10.1093/qmath/29.4.483.
  • Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. D9. ISBN 978-0-387-20860-2. Zbl 1058.11001.
  • Hall, Jr., Marshall (1971). "The Diophantine equation x - y = k". In Atkin, A.O.L.; Birch, B. J. (eds.). Computers in Number Theory. pp. 173–198. ISBN 0-12-065750-3. Zbl 0225.10012.
  • Elkies, N.D. "Rational points near curves and small nonzero | 'x - y'| via lattice reduction", http://arxiv.org/abs/math/0005139
  • Danilov, L.V., "The Diophantine equation   'x   -  y'  ' =  k  ' and Hall's conjecture", 'Math. Notes Acad. Sci. USSR' 32(1982), 617-618.
  • Gebel, J., Pethö, A., and Zimmer, H.G.: "On Mordell's equation", 'Compositio Math.' 110(1998), 335-367.
  • I. Jiménez Calvo, J. Herranz and G. Sáez Moreno, "A new algorithm to search for small nonzero |'x3 - y2'| values", 'Math. Comp.' 78 (2009), pp. 2435-2444.
  • S. Aanderaa, L. Kristiansen and H. K. Ruud, "Search for good examples of Hall's conjecture", 'Math. Comp.' 87 (2018), 2903-2914.

External links

Categories: