In mathematics, a matrix factorization of a polynomial is a technique for factoring irreducible polynomials with matrices. David Eisenbud proved that every multivariate real-valued polynomial p without linear terms can be written as AB = pI, where A and B are square matrices and I is the identity matrix. Given the polynomial p, the matrices A and B can be found by elementary methods.
Example
The polynomial x + y is irreducible over R, but can be written as
References
- Eisenbud, David (1980-01-01). "Homological algebra on a complete intersection, with an application to group representations". Transactions of the American Mathematical Society. 260 (1): 35. doi:10.1090/S0002-9947-1980-0570778-7. ISSN 0002-9947.
- Crisler, David; Diveris, Kosmas, Matrix Factorizations of Sums of Squares Polynomials (PDF)
External links
This polynomial-related article is a stub. You can help Misplaced Pages by expanding it. |