Misplaced Pages

Mechanical metamaterial

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Mechanical metamaterials)

Mechanical metamaterials are rationally designed artificial materials/structures of precision geometrical arrangements leading to unusual physical and mechanical properties. These unprecedented properties are often derived from their unique internal structures rather than the materials from which they are made. Inspiration for mechanical metamaterials design often comes from biological materials (such as honeycombs and cells), from molecular and crystalline unit cell structures as well as the artistic fields of origami and kirigami. While early mechanical metamaterials had regular repeats of simple unit cell structures, increasingly complex units and architectures are now being explored. Mechanical metamaterials can be seen as a counterpart to the rather well-known family of optical metamaterials and electromagnetic metamaterials. Mechanical properties, including elasticity, viscoelasticity, and thermoelasticity, are central to the design of mechanical metamaterials. They are often also referred to as elastic metamaterials or elastodynamic metamaterials. Their mechanical properties can be designed to have values that cannot be found in nature, such as negative stiffness, negative Poisson’s ratio, negative compressibility, and vanishing shear modulus.

Classical mechanical metamaterials

3D printing, or additive manufacturing, has revolutionized the field in the past decade by enabling the fabrication of intricate mechanical metamaterial structures. Some of the unprecedented and unusual properties of classical mechanical metamaterials include:

Negative Poisson's ratio (auxetics)

Poisson's ratio defines how a material expands (or contracts) transversely when being compressed longitudinally. While most natural materials have a positive Poisson's ratio (coinciding with our intuitive idea that by compressing a material, it must expand in the orthogonal direction), a family of extreme materials known as auxetic materials can exhibit Poisson's ratios below zero. Examples of these can be found in nature, or fabricated, and often consist of a low-volume microstructure that grants the extreme properties. Simple designs of composites possessing negative Poisson's ratio (inverted hexagonal periodicity cell) were published in 1985. In addition, certain origami folds such as the Miura fold and, in general, zigzag-based folds are also known to exhibit negative Poisson's ratio.

Negative stiffness

Negative stiffness (NS) mechanical metamaterials are engineered structures that exhibit a counterintuitive property: as an external force is applied, the material deforms in a way that reduces the applied force rather than increasing it. This is in contrast to conventional materials that resist deformation. NS metamaterials are typically constructed from periodically arranged elements that undergo elastic instability under load. This instability leads to a negative stiffness behavior within a specific deformation range. The overall effect is a material that can absorb energy more efficiently and exhibit unique mechanical properties compared to traditional materials.

Negative thermal expansion

These mechanical metamaterials can exhibit coefficients of thermal expansion larger than that of either constituent. The expansion can be arbitrarily large positive or arbitrarily large negative, or zero. These materials substantially exceed the bounds for thermal expansion of a two-phase composite. They contain considerable void space.

High strength to density ratio

A high strength-to-density ratio mechanical metamaterial is a synthetic material engineered to possess exceptional mechanical properties relative to its weight. This is achieved through carefully designed internal microstructures, often periodic or hierarchical, which contribute to the material's overall performance.

Negative compressibility

In a closed thermodynamic system in equilibrium, both the longitudinal and volumetric compressibility are necessarily non-negative because of stability constraints. For this reason, when tensioned, ordinary materials expand along the direction of the applied force. It has been shown, however, that metamaterials can be designed to exhibit negative compressibility transitions, during which the material undergoes contraction when tensioned (or expansion when pressured). When subjected to isotropic stresses, these metamaterials also exhibit negative volumetric compressibility transitions. In this class of metamaterials, the negative response is along the direction of the applied force, which distinguishes these materials from those that exhibit negative transversal response (such as in the study of negative Poisson's ratio).

Negative bulk modulus

Mechanical metamaterials with negative effective bulk modulus exhibit intriguing and counterintuitive properties. Unlike conventional materials that compress under pressure, these materials expand. This anomalous behavior stems from their carefully engineered microstructure, which allows for internal deformation mechanisms that counteract the applied stress. Potential applications for these materials are vast. They could be employed to design acoustic or phononic metamaterials,advanced shock absorbers, and energy dissipation systems. Furthermore, their unique elastic properties may find utility in creating novel structural components with enhanced resilience and adaptability to dynamic loads.

Vanishing shear modulus

SEM image of a pentamode metamaterial (with a size of roughly 300μm)

A pentamode metamaterial is an artificial three-dimensional structure which, despite being a solid, ideally behaves like a fluid. Thus, it has a finite bulk but vanishing shear modulus, or in other words it is hard to compress yet easy to deform. Speaking in a more mathematical way, pentamode metamaterials have an elasticity tensor with only one non-zero eigenvalue and five (penta) vanishing eigenvalues. Pentamode structures have been proposed theoretically by Graeme Milton and Andrej Cherkaev in 1995 but have not been fabricated until early 2012. According to theory, pentamode metamaterials can be used as the building blocks for materials with completely arbitrary elastic properties. Anisotropic versions of pentamode structures are a candidate for transformation elastodynamics and elastodynamic cloaking.

Chiral micropolar elasticity

Very often Cauchy elasticity is sufficient to describe the effective behavior of mechanical metamaterials. When the unit cells of typical metamaterials are not centrosymmetric it has been shown that an effective description using chiral micropolar elasticity (or Cosserat ) was required. Micropolar elasticity combines the coupling of translational and rotational degrees of freedom in the static case and shows an equivalent behavior to the optical activity.

Infinite mechanical tunability

In addition to the well-known unprecedented mechanical properties of mechanical metamaterials, "infinite mechanical tunability" is another crucial aspect of mechanical metamaterials. This is particularly important for structural materials as their microstructure and stiffness can be tuned to effectively achieve theoretical upper bounds for specific stiffness and strength. While theoretical composites that achieve the same upper bound have existed for some time, they have been impractical to fabricate as they require features on multiple length scales. Single length scale designs are amenable to additive manufacturing, where they can enable engineered systems that maximize lightweight stiffness, strength and energy absorption.

Active Mechanical Metamaterials

To date, most mainstream studies on mechanical metamaterials have focused on passive structures with fixed properties, lacking active sensing or feedback capabilities. Deep integration of advanced functionalities is a critical challenge in exploring the next generation of metamaterials. Composite mechanical metamaterials could be the key to achieving this goal. However, the entire concept of composite mechanical metamaterials is still in its infancy. Obtaining programmable behavior through the interplay between material and structure in composite mechanical metamaterials enables integrating advanced functionalities into their texture beyond their mechanical properties. The “mechanical metamaterial tree of knowledge” implies that chiral, lattice and negative metamaterials (e.g., negative bulk modulus or negative elastic modulus) are ripe followed by origami and cellular metamaterials.

Recent research trends have been entering a space beyond merely exploring unprecedented mechanical properties. Emerging directions envisioned are sensing, energy harvesting, and actuating mechanical metamaterials.The tree of knowledge reveals that digital computing, digital data storage, and micro/nano-electromechanical systems (MEMS/NEMS) applications are one of the pillars of the mechanical metamaterials future research. Along this direction of evolution, the final target can be active mechanical metamaterials with a level of cognition. Cognitive abilities are crucial elements in a truly "intelligent mechanical metamaterials". Similar to complex living organisms, intelligent mechanical metamaterials can potentially deploy their cognitive abilities for sensing, self-powering, and information processing to interact with the surrounding environments, optimizing their response, and creating a sense–decide–respond loop.

Mechanical metamaterial tree of knowledge

Programmable mechanical metamaterials

Programmable response is an emerging direction for mechanical metamaterials beyond mechanical properties. Electrical responsiveness is an important functionality for designing adaptive, actuating, and autonomous mechanical metamaterials. For example, research ideas have been opened by active and adaptive mechanical metamaterials that design electrical materials into the microstructural units of metamaterials to autonomously convert mechanical-strain input into electrical-signal output.

Responsive mechanical metamaterials

Integrating functional materials and mechanical design is an emerging research area to explore responsive mechanical metamaterials. Recent studies explore new classes of mechanical metamaterials that can response to different excitation types such acoustic, thermophotovoltaic and magnetic.

Sensing and energy harvesting mechanical metamaterials

Recent studies have explored the integration of sensing and energy harvesting functionalities into the fabric of mechanical metamaterials. Meta-tribomaterials proposed in 2021 are a new class of multifunctional composite mechanical metamaterials with intrinsic sensing and energy harvesting functionalities. These material systems are composed of finely tailored and topologically different triboelectric microstructures. Meta-tribomaterials can serve as nanogenerators and sensing media to directly collect information about its operating environment. They naturally inherit the enhanced mechanical properties offered by classical mechanical metamaterials. Under mechanical excitations, meta-tribomaterials generate electrical signals which can be used for active sensing and empowering sensors and embedded electronics.

Electronic mechanical metamaterials

Electronic mechanical metamaterials are active mechanical metamaterials with digital computing and information storage capabilities. They have built the foundation for a new scientific field of meta-mechanotronics (mechanical metamaterial electronics) proposed in 2023. These material systems are created via integrating mechanical metamaterials, digital electronics and nano energy harvesting (e.g. triboelectric, piezoelectric, pyroelectric) technologies. Electronic mechanical metamaterials hold the potential to function as digital logic gates, paving the way for the development of mechanical metamaterial computers (MMCs) that could complement traditional electronic systems. Such computing metamaterial systems can be particularly useful under extreme loads and harsh environments (e.g. high pressure, high/low temperature and radiation exposure) where traditional semiconductor electronics cannot maintain their designed logical functions.

References

  1. Lakes, Roderic (1987-02-27). "Foam Structures with a Negative Poisson's Ratio". Science. 235 (4792): 1038–1040. Bibcode:1987Sci...235.1038L. doi:10.1126/science.235.4792.1038. ISSN 0036-8075. PMID 17782252.
  2. Bertoldi, Katia; Reis, Pedro M.; Willshaw, Stephen; Mullin, Tom (2010-01-19). "Negative Poisson's Ratio Behavior Induced by an Elastic Instability". Advanced Materials. 22 (3): 361–366. Bibcode:2010AdM....22..361B. doi:10.1002/adma.200901956. ISSN 0935-9648. PMID 20217719.
  3. Greaves, G. N.; Greer, A. L.; Lakes, R. S.; Rouxel, T. (November 2011). "Poisson's ratio and modern materials". Nature Materials. 10 (11): 823–837. Bibcode:2011NatMa..10..823G. doi:10.1038/nmat3134. ISSN 1476-4660. PMID 22020006.
  4. ^ Zheng, Xiaoyu; Lee, Howon; Weisgraber, Todd H.; Shusteff, Maxim; DeOtte, Joshua; Duoss, Eric B.; Kuntz, Joshua D.; Biener, Monika M.; Ge, Qi; Jackson, Julie A.; Kucheyev, Sergei O.; Fang, Nicholas X.; Spadaccini, Christopher M. (2014-06-20). "Ultralight, ultrastiff mechanical metamaterials". Science. 344 (6190): 1373–1377. Bibcode:2014Sci...344.1373Z. doi:10.1126/science.1252291. hdl:1721.1/88084. ISSN 0036-8075.
  5. Rafsanjani, Ahmad; Akbarzadeh, Abdolhamid; Pasini, Damiano (October 2015). "Snapping Mechanical Metamaterials under Tension". Advanced Materials. 27 (39): 5931–5935. arXiv:1612.05987. Bibcode:2015AdM....27.5931R. doi:10.1002/adma.201502809. ISSN 0935-9648. PMID 26314680.
  6. Christensen, Johan; Kadic, Muamer; Wegener, Martin; Kraft, Oliver; Wegener, Martin (2015-09-01). "Vibrant times for mechanical metamaterials". MRS Communications. 5 (3): 453–462. doi:10.1557/mrc.2015.51. ISSN 2159-6867.
  7. Li, Xiaoyan; Gao, Huajian (April 2016). "Smaller and stronger". Nature Materials. 15 (4): 373–374. doi:10.1038/nmat4591. ISSN 1476-4660.
  8. Haghpanah, Babak; Salari-Sharif, Ladan; Pourrajab, Peyman; Hopkins, Jonathan; Valdevit, Lorenzo (September 2016). "Multistable Shape-Reconfigurable Architected Materials". Advanced Materials. 28 (36): 7915–7920. Bibcode:2016AdM....28.7915H. doi:10.1002/adma.201601650. ISSN 0935-9648. PMID 27384125.
  9. Zadpoor, Amir A. (2016-08-22). "Mechanical meta-materials". Materials Horizons. 3 (5): 371–381. doi:10.1039/C6MH00065G. ISSN 2051-6355.
  10. Bauer, Jens; Meza, Lucas R.; Schaedler, Tobias A.; Schwaiger, Ruth; Zheng, Xiaoyu; Valdevit, Lorenzo (October 2017). "Nanolattices: An Emerging Class of Mechanical Metamaterials". Advanced Materials. 29 (40). Bibcode:2017AdM....2901850B. doi:10.1002/adma.201701850. ISSN 0935-9648.
  11. Bertoldi, Katia; Vitelli, Vincenzo; Christensen, Johan; van Hecke, Martin (2017-10-17). "Flexible mechanical metamaterials". Nature Reviews Materials. 2 (11): 17066. Bibcode:2017NatRM...217066B. doi:10.1038/natrevmats.2017.66. hdl:10016/25772. ISSN 2058-8437.
  12. Surjadi, James Utama; et al. (4 January 2019). "Mechanical Metamaterials and Their Engineering Applications". Advanced Engineering Materials. 21 (3): 1800864. doi:10.1002/adem.201800864.
  13. ^ Jiao, Pengcheng; Mueller, Jochen; Raney, Jordan R.; Zheng, Xiaoyu (Rayne); Alavi, Amir H. (2023-09-26). "Mechanical metamaterials and beyond". Nature Communications. 14 (1): 6004. Bibcode:2023NatCo..14.6004J. doi:10.1038/s41467-023-41679-8. ISSN 2041-1723. PMC 10522661.
  14. Xu, B.; Arias, F.; Brittain, S. T.; Zhao, X.-M.; Grzybowski, B.; Torquato, S.; Whitesides, G. M. (1999). "Making Negative Poisson's Ratio Microstructures by Soft Lithography". Advanced Materials. 11 (14): 1186–1189. Bibcode:1999AdM....11.1186X. doi:10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K.
  15. Bückmann, Tiemo; Stenger, Nicolas; Kadic, Muamer; Kaschke, Johannes; Frölich, Andreas; Kennerknecht, Tobias; Eberl, Christoph; Thiel, Michael; Wegener, Martin (22 May 2012). "Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography". Advanced Materials. 24 (20): 2710–2714. Bibcode:2012AdM....24.2710B. doi:10.1002/adma.201200584. PMID 22495906. S2CID 205244958.
  16. Kolpakovs, A.G. (1985). "Determination of the average characteristics of elastic frameworks". Journal of Applied Mathematics and Mechanics. 49 (6): 739–745. Bibcode:1985JApMM..49..739K. doi:10.1016/0021-8928(85)90011-5.
  17. Almgren, R.F. (1985). "An isotropic three-dimensional structure with Poisson's ratio=-1". Journal of Elasticity. 15 (4): 427–430. doi:10.1007/bf00042531. S2CID 123298026.
  18. Schenk, Mark (2011). Folded Shell Structures, PhD Thesis (PDF). University of Cambridge, Clare College.
  19. Wei, Z. Y.; Guo, Z. V.; Dudte, L.; Liang, H. Y.; Mahadevan, L. (2013-05-21). "Geometric Mechanics of Periodic Pleated Origami". Physical Review Letters. 110 (21): 215501. arXiv:1211.6396. Bibcode:2013PhRvL.110u5501W. doi:10.1103/PhysRevLett.110.215501. PMID 23745895. S2CID 9145953.
  20. Eidini, Maryam; Paulino, Glaucio H. (2015). "Unraveling metamaterial properties in zigzag-base folded sheets". Science Advances. 1 (8): e1500224. arXiv:1502.05977. Bibcode:2015SciA....1E0224E. doi:10.1126/sciadv.1500224. ISSN 2375-2548. PMC 4643767. PMID 26601253.
  21. Eidini, Maryam (2016). "Zigzag-base folded sheet cellular mechanical metamaterials". Extreme Mechanics Letters. 6: 96–102. arXiv:1509.08104. Bibcode:2016ExML....6...96E. doi:10.1016/j.eml.2015.12.006. S2CID 118424595.
  22. Lakes, R.; Rosakis, P.; Ruina, A. (1993-02-15). "Microbuckling instability in elastomeric cellular solids". Journal of Materials Science. 28 (17): 4667–4672. Bibcode:1993JMatS..28.4667L. doi:10.1007/bf00414256. ISSN 0022-2461.
  23. Hewage, Trishan A. M.; Alderson, Kim L.; Alderson, Andrew; Scarpa, Fabrizio (December 2016). "Double-Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties". Advanced Materials. 28 (46): 10323–10332. Bibcode:2016AdM....2810323H. doi:10.1002/adma.201603959. ISSN 0935-9648. PMID 27781310.
  24. Tan, Xiaojun; Wang, Bing; Zhu, Shaowei; Chen, Shuai; Yao, Kaili; Xu, Peifei; Wu, Linzhi; Sun, Yuguo (2019-12-10). "Novel multidirectional negative stiffness mechanical metamaterials". Smart Materials and Structures. 29 (1): 015037. doi:10.1088/1361-665x/ab47d9. ISSN 0964-1726.
  25. Correa, Dixon M; Klatt, Timothy; Cortes, Sergio; Haberman, Michael; Kovar, Desiderio; Seepersad, Carolyn (2015-01-01). "Negative stiffness honeycombs for recoverable shock isolation". Rapid Prototyping Journal. 21 (2): 193–200. doi:10.1108/RPJ-12-2014-0182. ISSN 1355-2546.
  26. Lehman, Jeremy; Lakes, Roderic (2013-09-01). "Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization". International Journal of Mechanics and Materials in Design. 9 (3): 213–225. doi:10.1007/s10999-012-9210-x. ISSN 1573-8841.
  27. Zhang, Qiao; Sun, Yuxin (2024-01-01). "Novel metamaterial structures with negative thermal expansion and tunable mechanical properties". International Journal of Mechanical Sciences. 261: 108692. doi:10.1016/j.ijmecsci.2023.108692. ISSN 0020-7403.
  28. Liu, Siyao; Li, Yaning (September 2023). "Thermal Expansion of Hybrid Chiral Mechanical Metamaterial with Patterned Bi-Strips". Advanced Engineering Materials. 25 (17). doi:10.1002/adem.202300478. ISSN 1438-1656.
  29. Lakes, Roderic (February 1993). "Materials with structural hierarchy". Nature. 361 (6412): 511–515. Bibcode:1993Natur.361..511L. doi:10.1038/361511a0. ISSN 1476-4687.
  30. Nicolaou, Zachary G.; Motter, Adilson E. (2012). "Mechanical metamaterials with negative compressibility transitions". Nature Materials. 11 (7): 608–13. arXiv:1207.2185. Bibcode:2012NatMa..11..608N. doi:10.1038/nmat3331. PMID 22609557. S2CID 13390648.
  31. Nicolaou, Zachary G.; Motter, Adilson E. (2013). "Longitudinal Inverted Compressibility in Super-strained Metamaterials". Journal of Statistical Physics. 151 (6): 1162–1174. arXiv:1304.0787. Bibcode:2013JSP...151.1162N. doi:10.1007/s10955-013-0742-8. S2CID 32700289.
  32. Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo (29 April 2009). "Acoustic metamaterial with negative modulus". Journal of Physics: Condensed Matter. 21 (17): 175704. arXiv:0812.2952. Bibcode:2009JPCM...21q5704L. doi:10.1088/0953-8984/21/17/175704. PMID 21825432. S2CID 26358086.
  33. Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo (1 December 2009). "Acoustic metamaterial with negative density". Physics Letters A. 373 (48): 4464–4469. Bibcode:2009PhLA..373.4464L. doi:10.1016/j.physleta.2009.10.013.
  34. Yang, Z.; Mei, Jun; Yang, Min; Chan, N.; Sheng, Ping (1 November 2008). "Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass" (PDF). Physical Review Letters. 101 (20): 204301. Bibcode:2008PhRvL.101t4301Y. doi:10.1103/PhysRevLett.101.204301. PMID 19113343. S2CID 714391.
  35. Ding, Yiqun; Liu, Zhengyou; Qiu, Chunyin; Shi, Jing (August 2007). "Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density". Physical Review Letters. 99 (9): 093904. Bibcode:2007PhRvL..99i3904D. doi:10.1103/PhysRevLett.99.093904. PMID 17931008.
  36. Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo (1 February 2010). "Composite Acoustic Medium with Simultaneously Negative Density and Modulus". Physical Review Letters. 104 (5): 054301. arXiv:0901.2772. Bibcode:2010PhRvL.104e4301L. doi:10.1103/PhysRevLett.104.054301. PMID 20366767. S2CID 119249065.
  37. Li, Jensen; Fok, Lee; Yin, Xiaobo; Bartal, Guy; Zhang, Xiang (2009). "Experimental demonstration of an acoustic magnifying hyperlens". Nature Materials. 8 (12): 931–934. Bibcode:2009NatMa...8..931L. doi:10.1038/nmat2561. PMID 19855382.
  38. Christensen, Johan; de Abajo, F. (2012). "Anisotropic Metamaterials for Full Control of Acoustic Waves". Physical Review Letters. 108 (12): 124301. Bibcode:2012PhRvL.108l4301C. doi:10.1103/PhysRevLett.108.124301. hdl:10261/92293. PMID 22540586. S2CID 36710766.
  39. Farhat, M.; Enoch, S.; Guenneau, S.; Movchan, A. (2008). "Broadband Cylindrical Acoustic Cloak for Linear Surface Waves in a Fluid". Physical Review Letters. 101 (13): 134501. Bibcode:2008PhRvL.101m4501F. doi:10.1103/PhysRevLett.101.134501. PMID 18851453.
  40. Cummer, Steven A; Schurig, David (2007). "One path to acoustic cloaking". New Journal of Physics. 9 (3): 45. Bibcode:2007NJPh....9...45C. doi:10.1088/1367-2630/9/3/045.
  41. ^ Milton, Graeme W.; Cherkaev, Andrej V. (1 January 1995). "Which Elasticity Tensors are Realizable?". Journal of Engineering Materials and Technology. 117 (4): 483. doi:10.1115/1.2804743.
  42. Kadic, Muamer; Bückmann, Tiemo; Stenger, Nicolas; Thiel, Michael; Wegener, Martin (1 January 2012). "On the practicability of pentamode mechanical metamaterials". Applied Physics Letters. 100 (19): 191901. arXiv:1203.1481. Bibcode:2012ApPhL.100s1901K. doi:10.1063/1.4709436. S2CID 54982039.
  43. Rueger, Z.; Lakes, R. S. (8 February 2018). "Strong Cosserat Elasticity in a Transversely Isotropic Polymer Lattice". Physical Review Letters. 120 (6): 065501. Bibcode:2018PhRvL.120f5501R. doi:10.1103/PhysRevLett.120.065501. PMID 29481282.
  44. Frenzel, Tobias; Kadic, Muamer; Wegener, Martin (23 November 2017). "Three-dimensional mechanical metamaterials with a twist". Science. 358 (6366): 1072–1074. Bibcode:2017Sci...358.1072F. doi:10.1126/science.aao4640. PMID 29170236.
  45. Ritchie, Robert O.; Zheng, Xiaoyu Rayne (September 2022). "Growing designability in structural materials". Nature Materials. 21 (9): 968–970. Bibcode:2022NatMa..21..968R. doi:10.1038/s41563-022-01336-9. ISSN 1476-4660.
  46. Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M. (2017). "Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness". Nature. 543 (7646): 533–537. Bibcode:2017Natur.543..533B. doi:10.1038/nature21075. hdl:2164/9176. ISSN 0028-0836. PMID 28219078. S2CID 205253514.
  47. Crook, Cameron; Bauer, Jens; Guell Izard, Anna; Santos de Oliveira, Cristine; Martins de Souza e Silva, Juliana; Berger, Jonathan B.; Valdevit, Lorenzo (2020-03-27). "Plate-nanolattices at the theoretical limit of stiffness and strength". Nature Communications. 11 (1): 1579. Bibcode:2020NatCo..11.1579C. doi:10.1038/s41467-020-15434-2. ISSN 2041-1723. PMC 7101344. PMID 32221283.
  48. Milton, G. W. (2018). "Stiff competition". Nature. 564 (7734): E1. Bibcode:2018Natur.564E...1M. doi:10.1038/s41586-018-0724-8. ISSN 1476-4687. PMID 30518886.
  49. Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M. (2018). "Berger et al. reply". Nature. 564 (7734): E2 – E4. Bibcode:2018Natur.564E...2B. doi:10.1038/s41586-018-0725-7. ISSN 1476-4687. PMID 30518891.
  50. ^ Pishvar, Maya; Harne, Ryan L. (2020-08-18). "Foundations for Soft, Smart Matter by Active Mechanical Metamaterials". Advanced Science. 7 (18). doi:10.1002/advs.202001384. ISSN 2198-3844. PMC 7509744. PMID 32999844.
  51. Frontiers of Materials Research: A Decadal Survey. Committee on Frontiers of Materials Research: A Decadal Survey, National Materials and Manufacturing Board, Board on Physics and Astronomy, Division on Engineering and Physical Sciences, National Academies of Sciences, Engineering, and Medicine. Washington, D.C.: National Academies Press. 2019-08-12. doi:10.17226/25244. ISBN 978-0-309-48387-2.{{cite book}}: CS1 maint: others (link)
  52. Florijn, Bastiaan; Coulais, Corentin; van Hecke, Martin (2014-10-24). "Programmable Mechanical Metamaterials". Physical Review Letters. 113 (17): 175503. arXiv:1407.4273. Bibcode:2014PhRvL.113q5503F. doi:10.1103/PhysRevLett.113.175503. hdl:1887/51767. PMID 25379923.
  53. Tang, Yichao; Lin, Gaojian; Yang, Shu; Yi, Yun Kyu; Kamien, Randall D.; Yin, Jie (March 2017). "Programmable Kiri-Kirigami Metamaterials". Advanced Materials. 29 (10). Bibcode:2017AdM....2904262T. doi:10.1002/adma.201604262. ISSN 0935-9648. PMID 28026066.
  54. Goswami, Debkalpa; Zhang, Yunlan; Liu, Shuai; Abdalla, Omar A; Zavattieri, Pablo D; Martinez, Ramses V (2021-01-01). "Mechanical metamaterials with programmable compression-twist coupling". Smart Materials and Structures. 30 (1): 015005. Bibcode:2021SMaS...30a5005G. doi:10.1088/1361-665X/abc182. ISSN 0964-1726.
  55. Liu, Weiqi; Jiang, Hanqing; Chen, Yan (February 2022). "3D Programmable Metamaterials Based on Reconfigurable Mechanism Modules". Advanced Functional Materials. 32 (9). doi:10.1002/adfm.202109865. ISSN 1616-301X.
  56. Gregg, Christine E.; Catanoso, Damiana; Formoso, Olivia Irene B.; Kostitsyna, Irina; Ochalek, Megan E.; Olatunde, Taiwo J.; Park, In Won; Sebastianelli, Frank M.; Taylor, Elizabeth M.; Trinh, Greenfield T.; Cheung, Kenneth C. (2024-01-17). "Ultralight, strong, and self-reprogrammable mechanical metamaterials". Science Robotics. 9 (86). doi:10.1126/scirobotics.adi2746. ISSN 2470-9476. PMID 38232146.
  57. Liu, Chenyang; Zhang, Xi; Chang, Jiahui; Lyu, You; Zhao, Jianan; Qiu, Song (2024-03-20). "Programmable mechanical metamaterials: basic concepts, types, construction strategies—a review". Frontiers in Materials. 11. Bibcode:2024FrMat..1161408L. doi:10.3389/fmats.2024.1361408. ISSN 2296-8016.
  58. Rafsanjani, Ahmad; Bertoldi, Katia; Studart, André R. (2019-04-10). "Programming soft robots with flexible mechanical metamaterials". Science Robotics. 4 (29). arXiv:1906.00306. doi:10.1126/scirobotics.aav7874. ISSN 2470-9476. PMID 33137714.
  59. Chen, Tian; Pauly, Mark; Reis, Pedro M. (January 2021). "A reprogrammable mechanical metamaterial with stable memory". Nature. 589 (7842): 386–390. Bibcode:2021Natur.589..386C. doi:10.1038/s41586-020-03123-5. ISSN 1476-4687. PMID 33473228.
  60. Mei, Tie; Meng, Zhiqiang; Zhao, Kejie; Chen, Chang Qing (2021-12-13). "A mechanical metamaterial with reprogrammable logical functions". Nature Communications. 12 (1): 7234. Bibcode:2021NatCo..12.7234M. doi:10.1038/s41467-021-27608-7. ISSN 2041-1723. PMC 8668933. PMID 34903754.
  61. Qi, Jixiang; Chen, Zihao; Jiang, Peng; Hu, Wenxia; Wang, Yonghuan; Zhao, Zeang; Cao, Xiaofei; Zhang, Shushan; Tao, Ran; Li, Ying; Fang, Daining (January 2022). "Recent Progress in Active Mechanical Metamaterials and Construction Principles". Advanced Science. 9 (1): e2102662. doi:10.1002/advs.202102662. ISSN 2198-3844. PMC 8728820. PMID 34716676.
  62. Li, Feng; Anzel, Paul; Yang, Jinkyu; Kevrekidis, Panayotis G.; Daraio, Chiara (2014-10-30). "Granular acoustic switches and logic elements". Nature Communications. 5 (1): 5311. Bibcode:2014NatCo...5.5311L. doi:10.1038/ncomms6311. ISSN 2041-1723. PMID 25354587.
  63. Woolf, David N.; Kadlec, Emil A.; Bethke, Don; Grine, Albert D.; Nogan, John J.; Cederberg, Jeffrey G.; Bruce Burckel, D.; Luk, Ting Shan; Shaner, Eric A.; Hensley, Joel M. (2018). "High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter". Optica. 5 (2): 213. Bibcode:2018Optic...5..213W. doi:10.1364/optica.5.000213. Retrieved 2024-07-23.
  64. Xie, Yunsong; Fan, Xin; Wilson, Jeffrey D.; Simons, Rainee N.; Chen, Yunpeng; Xiao, John Q. (2014-09-09). "A universal electromagnetic energy conversion adapter based on a metamaterial absorber". Scientific Reports. 4 (1): 6301. arXiv:1312.0683. Bibcode:2014NatSR...4E6301X. doi:10.1038/srep06301. ISSN 2045-2322. PMC 4158331. PMID 25200005.
  65. ^ Barri, Kaveh; Jiao, Pengcheng; Zhang, Qianyun; Chen, Jun; Wang, Zhong Lin; Alavi, Amir H. (2021-08-01). "Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing". Nano Energy. 86: 106074. Bibcode:2021NEne...8606074B. doi:10.1016/j.nanoen.2021.106074. ISSN 2211-2855. PMC 8423374. PMID 34504740.
  66. Alavi A.H., Barri K., “Self-aware composite mechanical metamaterials and method for making same”, U.S. Pat. No. US2022/0011176A1, 2022.
  67. ^ Zhang, Qianyun; Barri, Kaveh; Jiao, Pengcheng; Lu, Wenyun; Luo, Jianzhe; Meng, Wenxuan; Wang, Jiajun; Hong, Luqin; Mueller, Jochen; Lin Wang, Zhong; Alavi, Amir H. (2023-05-01). "Meta-mechanotronics for self-powered computation". Materials Today. 65: 78–89. doi:10.1016/j.mattod.2023.03.026. ISSN 1369-7021. S2CID 258230710.
Category: