Misplaced Pages

Tiabendazole

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Mertect) Chemical compound Pharmaceutical compound
Tiabendazole
Clinical data
Trade namesMintezol, others
AHFS/Drugs.comInternational Drug Names
Pregnancy
category
  • AU: B3
Routes of
administration
By mouth, topical
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • In general: ℞ (Prescription only)
Pharmacokinetic data
BioavailabilityСmax 1–2 hours (oral administration)
MetabolismGI tract
Elimination half-life8 hours
ExcretionUrine (90%)
Identifiers
IUPAC name
  • 4-(1H-1,3-Benzodiazol-2-yl)-1,3-thiazole
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
NIAID ChemDB
CompTox Dashboard (EPA)
ECHA InfoCard100.005.206 Edit this at Wikidata
Chemical and physical data
FormulaC10H7N3S
Molar mass201.25 g·mol
3D model (JSmol)
Density1.103 g/cm
Melting point293 to 305 °C (559 to 581 °F)
SMILES
  • 1c2ccccc2nc1c3cscn3
InChI
  • InChI=1S/C10H7N3S/c1-2-4-8-7(3-1)12-10(13-8)9-5-14-6-11-9/h1-6H,(H,12,13)
  • Key:WJCNZQLZVWNLKY-UHFFFAOYSA-N
  (what is this?)  (verify)

Tiabendazole (INN, BAN), also known as thiabendazole (AAN, USAN) or TBZ and the trade names Mintezol, Tresaderm, and Arbotect, is a preservative, an antifungal agent, and an antiparasitic agent.

Uses

Preservative

Tiabendazole is used primarily to control mold, blight, and other fungal diseases in fruits (e.g. oranges) and vegetables; it is also used as a prophylactic treatment for Dutch elm disease.

Tiabendazole is also used as a food additive, a preservative with E number E233 (INS number 233). For example, it is applied to bananas to ensure freshness, and is a common ingredient in the waxes applied to the skins of citrus fruits. It is not approved as a food additive in the EU, Australia and New Zealand.

Use in treatment of aspergillosis has been reported.

It is also used in anti-fungal wallboards as a mixture with azoxystrobin.

Parasiticide

As an antiparasitic, tiabendazole is able to control roundworms (such as those causing strongyloidiasis), hookworms, and other helminth species which infect wild animals, livestock, and humans. First approved for use in sheep in 1961 and horses in 1962, resistance to this drug was first found in Haemonchus contortus in 1964, and then in the two other major small ruminant nematode parasites, Teladorsagia circumcincta and Trichostrongylus colubriformis.

Fungicide

Tiabendazole acts as a fungicide through binding fungal tubulin. Resistant Aspergillus nidulans specimens were found to have a mutation in the gene coding for β-tubulin, which was reversible by a mutation in the gene for α-tubulin. This showed that thiabendazole binds to both α- and β-tubulin.

This chemical is also used as a pesticide, including to treat Beech Leaf Disease.

Other

In dogs and cats, tiabendazole is used to treat ear infections.

Tiabendazole is also a chelating agent, which means it is used medicinally to bind metals in cases of metal poisoning, such as lead, mercury, or antimony poisoning.

Research

Genes responsible for the maintenance of cell walls in yeast have been shown to be responsible for angiogenesis in vertebrates. Tiabendazole serves to block angiogenesis in both frog embryos and human cells. It has also been shown to serve as a vascular disrupting agent to reduce newly established blood vessels. Tiabendazole has been shown to effectively do this in certain cancer cells.

Pharmacodynamics

Tiabendazole works by inhibition of the mitochondrial, helminth-specific enzyme, fumarate reductase, with possible interaction with endogenous quinone.

Safety

The substance appears to have a slight toxicity in higher doses, with effects such as liver and intestinal disorders at high exposure in test animals (just below LD50 level). Some reproductive disorders and decreasing weaning weight have been observed, also at high exposure. Effects on humans from use as a drug include nausea, vomiting, loss of appetite, diarrhea, dizziness, drowsiness, or headache; very rarely also ringing in the ears, vision changes, stomach pain, yellowing eyes and skin, dark urine, fever, fatigue, increased thirst and change in the amount of urine occur. Carcinogenic effects have been shown at higher doses.

Synthesis

Intermediate aryl amidine (2) is prepared by aluminium trichloride-catalyzed addition of aniline to the nitrile of 4-cyanothiazole (1). The amidine (2) is then converted to its N-chloro derivative 3 with sodium hypochlorite (NaOCl). Upon treatment with base, this undergoes a nitrene insertion reaction (4) to produce tiabendazole (5).

Tiabendazole synthesis

An alternative synthesis involves reacting 4-thiazolecarboxamide with o-phenylenediamine in polyphosphoric acid.

Derivatives

A number of derivatives of tiabendazole are also pharmaceutical drugs, including albendazole, cambendazole, fenbendazole, oxfendazole, mebendazole, and flubendazole.

Preparation of cambendazole

See also

References

  1. "E233 : E Number : Preservative". www.ivyroses.com. Retrieved 2018-08-28.
  2. Rosenblum C (March 1977). "Non-drug-related residues in tracer studies". Journal of Toxicology and Environmental Health. 2 (4): 803–814. Bibcode:1977JTEH....2..803R. doi:10.1080/15287397709529480. PMID 853540.
  3. Sax NI (1989). Dangerous Properties of Industrial Materials. Vol. 1–3 (7th ed.). New York, NY: Van Nostrand Reinhold. p. 3251.
  4. UK Food Standards Agency: "Current EU approved additives and their E Numbers". Retrieved 2011-10-27.
  5. Australia New Zealand Food Standards Code"Standard 1.2.4 – Labelling of ingredients". 8 September 2011. Retrieved 2011-10-27.
  6. Upadhyay MP, West EP, Sharma AP (January 1980). "Keratitis due to Aspergillus flavus successfully treated with thiabendazole". The British Journal of Ophthalmology. 64 (1): 30–32. doi:10.1136/bjo.64.1.30. PMC 1039343. PMID 6766732.
  7. Igual-Adell R, Oltra-Alcaraz C, Soler-Company E, Sánchez-Sánchez P, Matogo-Oyana J, Rodríguez-Calabuig D (December 2004). "Efficacy and safety of ivermectin and thiabendazole in the treatment of strongyloidiasis". Expert Opinion on Pharmacotherapy. 5 (12): 2615–2619. doi:10.1517/14656566.5.12.2615. PMID 15571478. S2CID 23721306. Archived from the original on 2016-03-06.
  8. Portugal R, Schaffel R, Almeida L, Spector N, Nucci M (June 2002). "Thiabendazole for the prophylaxis of strongyloidiasis in immunosuppressed patients with hematological diseases: a randomized double-blind placebo-controlled study". Haematologica. 87 (6): 663–664. PMID 12031927.
  9. Kaplan, Ray M. (October 2004). "Drug resistance in nematodes of veterinary importance: a status report". Trends in Parasitology. 20 (10): 477–481. doi:10.1016/j.pt.2004.08.001. ISSN 1471-4922. PMID 15363441.
  10. Wang, C. C. (January 1984). "Parasite enzymes as potential targets for antiparasitic chemotherapy". Journal of Medicinal Chemistry. 27 (1): 1–9. doi:10.1021/jm00367a001. ISSN 0022-2623. PMID 6317859.
  11. "Beech Leaf Disease". UMass Extension Landscape, Nursery and Urban Forestry Program. University of Massachusetts Amherst. Retrieved 30 July 2024.
  12. Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM (August 2012). "Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent". PLOS Biology. 10 (8): e1001379. doi:10.1371/journal.pbio.1001379. PMC 3423972. PMID 22927795.
  13. Gilman AG, Rall TW, Nies AS, Taylor P, eds. (1990). Goodman and Gilman's The Pharmacological Basis of Therapeutics (8th ed.). New York, NY: Pergamon Press. p. 970.
  14. "Reregistration Eligibility Decision Thiabendazole" (PDF). Environmental Protection Agency. Retrieved 8 January 2013.
  15. Grenda VJ, Jones RE, Gal G, Sletzinger M (1965). "Novel Preparation of Benzimidazoles from N-Arylamidines. New Synthesis of Thiabendazole". The Journal of Organic Chemistry. 30: 259–261. doi:10.1021/jo01012a061.
  16. US 3336192, Sarett LH, Brown HD, "Anthelmintic substituted benzimidazole compositions", issued 1967, assigned to Merck & Co. 
  17. Brown HD, Matzuk AR, Ilves I, Peterson LH, Harris SA, Sarett LH, et al. (1961). "Antiparasitic Drugs. IV. 2-(4'-Thiazolyl)-Benzimidazole, A New Anthelmintic". Journal of the American Chemical Society. 83 (7): 1764–1765. doi:10.1021/ja01468a052.
  18. ZA 6800351, Hoff DR, Fisher MH, "Anthelmintic 5-substituted aminobenzimidazoles", issued 1969, assigned to Merck and Co., Inc.  Chemical Abstracts 72, 90461 (1970).
  19. Hoff DR, Fisher MH, Bochis RJ, Lusi A, Waksmunski F, Egerton JR, et al. (May 1970). "A new broad-spectrum anthelmintic: 2-(4-thiazolyl)-5-isopropoxycarbonylamino-benzimidazole". Experientia. 26 (5): 550–551. doi:10.1007/BF01898506. PMID 4245814. S2CID 26567527.

External links

Antifungals (D01 and J02)
Wall/
membrane
Ergosterol
inhibitors
Azoles (lanosterol 14α-
demethylase
inhibitors)
Imidazoles
  • Systemic: ketoconazole
Triazoles
Thiazoles
Polyene antimycotics
(ergosterol binding)
Squalene monooxygenase
inhibitors
Allylamines
Benzylamines
Others
β-glucan synthase
inhibitors
Intracellular
Pyrimidine analogues/
thymidylate synthase inhibitors
Mitotic inhibitors
Aminoacyl tRNA synthetase inhibitors
Others
Antiparasitics – Anthelmintics (P02) and endectocides (QP54)
Antiplatyhelmintic agents
Antitrematodals
(schistosomicides)
Binds tubulin
AChE inhibitor
Other/unknown
Anticestodals
(taeniacides)
Binds tubulin
Other/unknown
Antinematodal agents
(including
macrofilaricides)
Binds tubulin
Glutamate-gated chloride channel, GABA receptor
NMDA
Other/unknown
Categories: