Misplaced Pages

Microscopic traffic flow model

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (June 2017) (Learn how and when to remove this message)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Microscopic traffic flow model" – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this message)
(Learn how and when to remove this message)

Microscopic traffic flow models are a class of scientific models of vehicular traffic dynamics.

In contrast, to macroscopic models, microscopic traffic flow models simulate single vehicle-driver units, so the dynamic variables of the models represent microscopic properties like the position and velocity of single vehicles.

Car-following models

Also known as time-continuous models, all car-following models have in common that they are defined by ordinary differential equations describing the complete dynamics of the vehicles' positions x α {\displaystyle x_{\alpha }} and velocities v α {\displaystyle v_{\alpha }} . It is assumed that the input stimuli of the drivers are restricted to their own velocity v α {\displaystyle v_{\alpha }} , the net distance (bumper-to-bumper distance) s α = x α 1 x α α 1 {\displaystyle s_{\alpha }=x_{\alpha -1}-x_{\alpha }-\ell _{\alpha -1}} to the leading vehicle α 1 {\displaystyle \alpha -1} (where α 1 {\displaystyle \ell _{\alpha -1}} denotes the vehicle length), and the velocity v α 1 {\displaystyle v_{\alpha -1}} of the leading vehicle. The equation of motion of each vehicle is characterized by an acceleration function that depends on those input stimuli:

x ¨ α ( t ) = v ˙ α ( t ) = F ( v α ( t ) , s α ( t ) , v α 1 ( t ) , s α 1 ( t ) ) {\displaystyle {\ddot {x}}_{\alpha }(t)={\dot {v}}_{\alpha }(t)=F(v_{\alpha }(t),s_{\alpha }(t),v_{\alpha -1}(t),s_{\alpha -1}(t))}

In general, the driving behavior of a single driver-vehicle unit α {\displaystyle \alpha } might not merely depend on the immediate leader α 1 {\displaystyle \alpha -1} but on the n a {\displaystyle n_{a}} vehicles in front. The equation of motion in this more generalized form reads:

v ˙ α ( t ) = f ( x α ( t ) , v α ( t ) , x α 1 ( t ) , v α 1 ( t ) , , x α n a ( t ) , v α n a ( t ) ) {\displaystyle {\dot {v}}_{\alpha }(t)=f(x_{\alpha }(t),v_{\alpha }(t),x_{\alpha -1}(t),v_{\alpha -1}(t),\ldots ,x_{\alpha -n_{a}}(t),v_{\alpha -n_{a}}(t))}

Examples of car-following models

Cellular automaton models

Cellular automaton (CA) models use integer variables to describe the dynamical properties of the system. The road is divided into sections of a certain length Δ x {\displaystyle \Delta x} and the time is discretized to steps of Δ t {\displaystyle \Delta t} . Each road section can either be occupied by a vehicle or empty and the dynamics are given by updated rules of the form:

v α t + 1 = f ( s α t , v α t , v α 1 t , ) {\displaystyle v_{\alpha }^{t+1}=f(s_{\alpha }^{t},v_{\alpha }^{t},v_{\alpha -1}^{t},\ldots )}
x α t + 1 = x α t + v α t + 1 Δ t {\displaystyle x_{\alpha }^{t+1}=x_{\alpha }^{t}+v_{\alpha }^{t+1}\Delta t}

(the simulation time t {\displaystyle t} is measured in units of Δ t {\displaystyle \Delta t} and the vehicle positions x α {\displaystyle x_{\alpha }} in units of Δ x {\displaystyle \Delta x} ).

The time scale is typically given by the reaction time of a human driver, Δ t = 1 s {\displaystyle \Delta t=1{\text{s}}} . With Δ t {\displaystyle \Delta t} fixed, the length of the road sections determines the granularity of the model. At a complete standstill, the average road length occupied by one vehicle is approximately 7.5 meters. Setting Δ x {\displaystyle \Delta x} to this value leads to a model where one vehicle always occupies exactly one section of the road and a velocity of 5 corresponds to 5 Δ x / Δ t = 135 km/h {\displaystyle 5\Delta x/\Delta t=135{\text{km/h}}} , which is then set to be the maximum velocity a driver wants to drive at. However, in such a model, the smallest possible acceleration would be Δ x / ( Δ t ) 2 = 7.5 m / s 2 {\displaystyle \Delta x/(\Delta t)^{2}=7.5{\text{m}}/{\text{s}}^{2}} which is unrealistic. Therefore, many modern CA models use a finer spatial discretization, for example Δ x = 1.5 m {\displaystyle \Delta x=1.5{\text{m}}} , leading to a smallest possible acceleration of 1.5 m / s 2 {\displaystyle 1.5{\text{m}}/{\text{s}}^{2}} .

Although cellular automaton models lack the accuracy of the time-continuous car-following models, they still have the ability to reproduce a wide range of traffic phenomena. Due to the simplicity of the models, they are numerically very efficient and can be used to simulate large road networks in real-time or even faster.

Examples of cellular automaton models

See also

References

  1. Gipps, P. G. (1981). "A behavioural car-following model for computer simulation". Transportation Research Part B: Methodological. 15 (2): 105–111. doi:10.1016/0191-2615(81)90037-0. ISSN 0191-2615. Retrieved 2022-02-17.
  2. Treiber, null; Hennecke, null; Helbing, null (August 2000). "Congested traffic states in empirical observations and microscopic simulations". Physical Review E. 62 (2 Pt A): 1805–1824. arXiv:cond-mat/0002177. Bibcode:2000PhRvE..62.1805T. doi:10.1103/physreve.62.1805. ISSN 1063-651X. PMID 11088643. S2CID 1100293.
  3. Isha, Most. Kaniz Fatema; Shawon, Md. Nazirul Hasan; Shamim, Md.; Shakib, Md. Nazmus; Hashem, M.M.A.; Kamal, M.A.S. (July 2021). "A DNN Based Driving Scheme for Anticipatory Car Following Using Road-Speed Profile". 2021 IEEE Intelligent Vehicles Symposium (IV). 2021 IEEE Intelligent Vehicles Symposium (IV). pp. 496–501. doi:10.1109/IV48863.2021.9575314.
Categories: