Misplaced Pages

Ming Antu's infinite series expansion of trigonometric functions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Fig. 1: The Ming Antu Model
Fig. 3: Ming Antu independently discovered Catalan numbers.

Ming Antu's infinite series expansion of trigonometric functions. Ming Antu, a court mathematician of the Qing dynasty did extensive work on the infinite series expansion of trigonometric functions in his masterpiece Geyuan Milü Jiefa (Quick Method of Dissecting the Circle and Determination of The Precise Ratio of the Circle). Ming Antu built geometrical models based on a major arc of a circle and the nth dissection of the major arc. In Fig 1, AE is the major chord of arc ABCDE, and AB, BC, CD, DE are its nth equal segments. If chord AE = y, chord AB = BC = CD = DE = x, the task was to find chord y as the infinite series expansion of chord x. He studied the cases of n = 2, 3, 4, 5, 10, 100, 1000 and 10000 in great detail in volumes 3 and 4 of Geyuan Milü Jiefa.

Historical background

In 1701, French Jesuit missionary Pierre Jartoux (1669-1720) came to China, and he brought along three infinite series expansions of trigonometric functions by Isaac Newton and J. Gregory:

π = 3 ( 1 + 1 4 3 ! + 3 2 4 2 5 ! + 3 2 5 2 4 3 7 ! + ) {\displaystyle \pi =3\left(1+{\frac {1}{4\cdot 3!}}+{\frac {3^{2}}{4^{2}\cdot 5!}}+{\frac {3^{2}\cdot 5^{2}}{4^{3}\cdot 7!}}+\cdots \right)}
sin x = x x 3 3 ! + x 5 5 ! x 7 7 ! + {\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots }
vers x = x 2 2 ! x 4 4 ! + x 6 6 ! + . {\displaystyle \operatorname {vers} x={\frac {x^{2}}{2!}}-{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots .}

These infinite series stirred up great interest among Chinese mathematicians, as the calculation of π with these "quick methods" involved only multiplication, addition or subtraction, being much faster than classic Liu Hui's π algorithm which involves taking square roots. However, Jartoux did not bring along the method for deriving these infinite series. Ming Antu suspected that the Europeans did not want to share their secrets, and hence he was set to work on it. He worked on and off for thirty years and completed a manuscript called Geyuan Milü Jiefa. He created geometrical models for obtaining trigonometric infinite series, and not only found the method for deriving the above three infinite series, but also discovered six more infinite series. In the process, he discovered and applied Catalan numbers.

Two-segment chord

Fig. 2: Ming Antu's geometric model of 2-segment chord

Figure 2 is Ming Antu's model of a 2-segment chord. Arc BCD is a part of a circle with unit (r = 1) radius. AD is the main chord, arc BCD is bisected at C, draw lines BC, CD, let BC = CD = x and let radius AC = 1.

Apparently, B D = 2 x G H {\displaystyle BD=2x-GH}

Let EJ = EF, FK = FJ; extend BE straight to L, and let EL = BE; make BF = BE, so F is inline with AE. Extended BF to M, let BF = MF; connect LM, LM apparently passes point C. The inverted triangle BLM along BM axis into triangle BMN, such that C coincident with G, and point L coincident with point N. The Invert triangle NGB along BN axis into triangle; apparently BI = BC.

A B : B C : C I = 1 : x : x 2 {\displaystyle AB:BC:CI=1:x:x^{2}}

BM bisects CG and let BM = BC; join GM, CM; draw CO = CM to intercept BM at O; make MP = MO; make NQ = NR, R is the intersection of BN and AC. ∠EBC = 1/2 ∠CAE = 1/2 ∠EAB; {\displaystyle \therefore } ∠EBM = ∠EAB; thus we obtain a series of similar triangles: ABE, BEF, FJK, BLM, CMO, MOP, CGH and triangle CMO = triangle EFJ;

A B : B E : E F : F J : J K = 1 : p : p 2 : p 3 : p 4 {\displaystyle AB:BE:EF:FJ:JK=1:p:p^{2}:p^{3}:p^{4}}
1 : B E = B E : E F ; {\displaystyle 1:BE=BE:EF;} namely E F = B E 2 {\displaystyle EF=BE^{2}}
1 : B E 2 = x : G H {\displaystyle 1:BE^{2}=x:GH}

So G H = x B E 2 = x p 2 {\displaystyle GH=x\cdot BE^{2}=xp^{2}} ,

and B D = 2 x x p 2 {\displaystyle BD=2x-xp^{2}}

Because kite-shaped ABEC and BLIN are similar,.

E F = L C = C M = M G = N G = I N {\displaystyle EF=LC=CM=MG=NG=IN}
L M + M N = C M + M N + I N = C I + O P = J K + C I {\displaystyle LM+MN=CM+MN+IN=CI+OP=JK+CI}
A B : ( B E + E C ) = B L : ( L M + M N ) {\displaystyle \therefore AB:(BE+EC)=BL:(LM+MN)} and A B : B L = B L : ( C I + J K ) {\displaystyle AB:BL=BL:(CI+JK)}
Let B L = q {\displaystyle BL=q}
A B : B L : ( C I + J K ) = 1 : q : q 2 {\displaystyle AB:BL:(CI+JK)=1:q:q^{2}}
J K = p 4 {\displaystyle JK=p^{4}}
C I = y 2 {\displaystyle CI=y^{2}}
C I + J K = q 2 = B L 2 = ( 2 B E ) 2 = ( 2 p ) 2 = 4 p 2 {\displaystyle CI+JK=q^{2}=BL^{2}=(2BE)^{2}=(2p)^{2}=4p^{2}}

Thus q 2 = 4 p 2 {\displaystyle q^{2}=4p^{2}} or p = q 2 {\displaystyle p={\frac {q}{2}}}

Further: C I + J K = x 2 + p 4 = q 2 {\displaystyle CI+JK=x^{2}+p^{4}=q^{2}} .
x 2 + q 4 16 = q 2 , {\displaystyle x^{2}+{\frac {q^{4}}{16}}=q^{2},}

then

x 2 = q 2 q 4 16 {\displaystyle x^{2}=q^{2}-{\frac {q^{4}}{16}}}
Square up the above equation on both sides and divide by 16:
( x 2 ) 2 16 = ( q 2 q 4 16 ) 2 16 = j = 0 2 ( 1 ) j ( 2 j ) q 2 ( 2 + j ) 16 j {\displaystyle {\frac {(x^{2})^{2}}{16}}={\frac {(q^{2}-{\frac {q^{4}}{16}})^{2}}{16}}=\sum _{j=0}^{2}(-1)^{j}{2 \choose j}{\frac {q^{2(2+j)}}{16^{j}}}}
x 4 16 = q 4 16 q 6 128 + q 8 4096 16 {\displaystyle {\frac {x^{4}}{16}}={\frac {q^{4}}{16}}-{\frac {q^{6}}{128}}+{\frac {q^{8}}{4096}}{16}}

And so on

x 2 n 16 n 1 = j = 0 n ( 1 ) j ( n j ) q 2 ( n + j ) 16 n + j 1 {\displaystyle {\frac {x^{2n}}{16^{n-1}}}=\sum _{j=0}^{n}(-1)^{j}{n \choose j}{\frac {q^{2(n+j)}}{16^{n+j-1}}}} .

Add up the following two equations to eliminate q 4 {\displaystyle q^{4}} items:

x 2 = q 2 q 4 16 {\displaystyle x^{2}=q^{2}-{\frac {q^{4}}{16}}}
x 4 16 = q 4 16 2 q 6 16 2 + q 8 4096 16 {\displaystyle {\frac {x^{4}}{16}}={{\frac {q^{4}}{16}}-{\frac {2q^{6}}{16^{2}}}+{\frac {q^{8}}{4096}}}{16}}
x 2 + x 4 16 = q 2 q 6 128 + q 8 4096 {\displaystyle x^{2}+{\frac {x^{4}}{16}}=q^{2}-{\frac {q^{6}}{128}}+{\frac {q^{8}}{4096}}}
x 2 + x 4 16 + 2 x 6 16 2 = q 2 5 q 8 4096 + 3 q 10 32768 q 12 524288 , {\displaystyle x^{2}+{\frac {x^{4}}{16}}+{\frac {2x^{6}}{16^{2}}}=q^{2}-{\frac {5q^{8}}{4096}}+{\frac {3q^{10}}{32768}}-{\frac {q^{12}}{524288}},} (after eliminated q 6 {\displaystyle q^{6}} item).

......................................

x 2 + x 4 16 + 2 x 6 16 2 + 5 x 8 16 3 + 14 x 10 16 4 + 42 x 12 16 5 + 132 x 14 16 6 + 429 x 16 16 7 + 1430 x 18 16 8 + 4862 x 20 16 9 + 16796 x 22 16 10 + 58786 x 24 16 11 + 208012 x 26 16 12 + 742900 x 28 16 13 + 2674440 x 30 16 14 + 9694845 x 32 16 15 + 35357670 x 34 16 16 + 129644790 x 36 16 17 + 477638700 x 38 16 18 + 1767263190 x 40 16 19 + 6564120420 x 42 16 20 = q 2 + 62985 8796093022208 q 24 {\displaystyle {\begin{aligned}&x^{2}+{\frac {x^{4}}{16}}+{\frac {2x^{6}}{16^{2}}}+{\frac {5x^{8}}{16^{3}}}+{\frac {14x^{10}}{16^{4}}}+{\frac {42x^{12}}{16^{5}}}\\{}&+{\frac {132x^{14}}{16^{6}}}+{\frac {429x^{16}}{16^{7}}}+{\frac {1430x^{18}}{16^{8}}}+{\frac {4862x^{20}}{16^{9}}}\\&{}+{\frac {16796x^{22}}{16^{10}}}+{\frac {58786x^{24}}{16^{11}}}+{\frac {208012x^{26}}{16^{12}}}\\&{}+{\frac {742900x^{28}}{16^{13}}}+{\frac {2674440x^{30}}{16^{14}}}+{\frac {9694845x^{32}}{16^{15}}}\\&{}+{\frac {35357670x^{34}}{16^{16}}}+{\frac {129644790x^{36}}{16^{17}}}\\&{}+{\frac {477638700x^{38}}{16^{18}}}+{\frac {1767263190x^{40}}{16^{19}}}+{\frac {6564120420x^{42}}{16^{20}}}\\&=q^{2}+{\frac {62985}{8796093022208}}q^{24}\end{aligned}}}

Expansion coefficients of the numerators: 1, 1, 2, 5, 14, 42, 132 ...... (see Figure II Ming Antu original figure bottom line, read from right to left) are the Catalan numbers; Ming Antu discovered the Catalan number.

Thus:

q 2 = n = 1 C n x 2 n 4 2 n 2 {\displaystyle q^{2}=\sum _{n=1}^{\infty }C_{n}{\frac {x^{2n}}{4^{2n-2}}}}

in which C n = 1 n + 1 ( 2 n n ) {\displaystyle C_{n}={\frac {1}{n+1}}{2n \choose n}} is Catalan number. Ming Antu pioneered the use of recursion relations in Chinese mathematics

C n = k ( 1 ) k ( n k k + 1 ) C n k {\displaystyle C_{n}=\sum _{k}(-1)^{k}{nk \choose k+1}C_{nk}}
B C : C G : G H = A B : B E : E F = 1 : p : p 2 = x : p x : p 2 x {\displaystyle \because BC:CG:GH=AB:BE:EF=1:p:p^{2}=x:px:p^{2}x}
G H := p 2 x = ( q 2 ) 2 x = q 2 x 4 {\displaystyle \therefore GH:=p^{2}x=({\frac {q}{2}})^{2}x={\frac {q^{2}x}{4}}}

substituted into B D = 2 x G H {\displaystyle BD=2x-GH}

Finally he obtained

B D = 2 x x 4 q 2 {\displaystyle BD=2x-{\frac {x}{4}}q^{2}}
= 2 x n = 1 C n x 2 n + 1 4 2 n 1 {\displaystyle =2x-\sum _{n=1}^{\infty }C_{n}{\frac {x^{2n+1}}{4^{2n-1}}}}

In Figure 1 BAE angle = α, BAC angle = 2α × x = BC = sinα × q = BL = 2BE = 4sin (α /2) × BD = 2sin (2α) Ming Antu obtained B D = 2 x x B E 2 {\displaystyle BD=2x-x\cdot BE^{2}}

That is
sin ( 2 α ) = 2 sin α n = 1 C n ( sin α ) 2 n + 1 4 n 1 {\displaystyle \sin(2\alpha )=2\sin \alpha -\sum _{n=1}^{\infty }C_{n}{\frac {(\sin \alpha )^{2n+1}}{4^{n-1}}}}
= 2 sin ( α ) 2 sin ( α ) 3 1 + cos ( α ) {\displaystyle =2\sin(\alpha )-{\frac {2\sin(\alpha )^{3}}{1+\cos(\alpha )}}}

q 2 = B L 2 = n = 1 C n x 2 n 4 2 n 2 {\displaystyle q^{2}=BL^{2}=\sum _{n=1}^{\infty }C_{n}{\frac {x^{2n}}{4^{2n-2}}}}

Ie sin ( α 2 ) 2 = n = 1 C n ( s i n α ) 2 n 4 2 n {\displaystyle \sin({\frac {\alpha }{2}})^{2}=\sum _{n=1}^{\infty }C_{n}{\frac {(sin\alpha )^{2n}}{4^{2n}}}}

Three-segment chord

Fig 3. Ming Antu's geometrical model for three segment chord

As shown in Fig 3, BE is a whole arc chord, BC = CE = DE = an are three arcs of equal portions. Radii AB = AC = AD = AE = 1. Draw lines BC, CD, DE, BD, EC; let BG=EH = BC, Bδ = Eα = BD, then triangle Cαβ = Dδγ; while triangle Cαβ is similar to triangle BδD.

As such:

A B : B C = B C : C G = C G : G F {\displaystyle AB:BC=BC:CG=CG:GF} , B C : F G = B D : δ γ {\displaystyle BC:FG=BD:\delta \gamma }
2 B D = B E + δ α {\displaystyle 2BD=BE+\delta \alpha }
2 B D δ γ = B E + B C {\displaystyle 2BD-\delta \gamma =BE+BC}

2 × B D δ γ B C = B E {\displaystyle \therefore 2\times BD-\delta \gamma -BC=BE}

Eventually, he obtained

B E = 3 × a a 3 {\displaystyle BE=3\times a-a^{3}}

Four-segment chord

Ming Antu 4 segment chord model

Let y 4 {\displaystyle y_{4}} denotes the length of the main chord, and let the length of four equal segment chord =x,

y 4 = 4 × a 10 × a 3 4 + 14 × a 5 4 3 12 × a 7 4 5 {\displaystyle y_{4}=4\times a-{\frac {10\times a^{3}}{4}}+{\frac {14\times a^{5}}{4^{3}}}-{\frac {12\times a^{7}}{4^{5}}}} +......

4 a 10 × a 3 / 4 + n = 1 ( 16 C n 2 C n + 1 ) × a 2 n + 1 4 2 n 1 {\displaystyle 4a-10\times a^{3}/4+\sum _{n=1}^{\infty }(16C_{n}-2C_{n+1})\times {\frac {a^{2n+1}}{4^{2n-1}}}} .

Trigonometry meaning:

sin ( 4 × α ) = 4 × sin ( α ) 10 × sin 3 α {\displaystyle \sin(4\times \alpha )=4\times \sin(\alpha )-10\times \sin ^{3}\alpha } + n = 1 ( 16 × C n 2 C n + 1 ) × sin 2 n + 3 ( α ) 4 n {\displaystyle +\sum _{n=1}^{\infty }(16\times C_{n}-2C_{n+1})\times {\frac {\sin ^{2n+3}(\alpha )}{4^{n}}}} .

Five-segment chord

Ming Antu 5 segment chord model

y 5 = 5 a 5 a 3 + a 5 {\displaystyle y_{5}=5a-5a^{3}+a^{5}}

that is
sin ( 5 α ) = 5 sin ( α ) 20 sin 3 ( α ) + 16 sin 5 ( α ) {\displaystyle \sin(5\alpha )=5\sin(\alpha )-20\sin ^{3}(\alpha )+16\sin ^{5}(\alpha )}

Ten-segment chord

Ming Antu 10 segment chord diagram

From here on, Ming Antu stop building geometrical model, he carried out his computation by pure algebraic manipulation of infinite series.

Apparently ten segments can be considered as a composite 5 segment, with each segment in turn consist of two subsegments.

y 10 = y 5 ( y 2 ) {\displaystyle \therefore y_{10}=y_{5}(y_{2})}

y 10 ( a ) = 5 × y 2 5 × ( y 2 ) 3 + ( y 2 ) 5 {\displaystyle y_{10}(a)=5\times y_{2}-5\times (y_{2})^{3}+(y_{2})^{5}} ,

He computed the third and fifth power of infinite series y 2 {\displaystyle y_{2}} in the above equation, and obtained:

y 10 ( a ) = 10 × a 165 × a 3 4 + 3003 × a 5 4 3 21450 × a 7 4 5 {\displaystyle y_{10}(a)=10\times a-{\frac {165\times a^{3}}{4}}+{\frac {3003\times a^{5}}{4^{3}}}-{\frac {21450\times a^{7}}{4^{5}}}} +......

Hundred-segment chord

Ming Antu 100 segment chord diagram
Facsimile of Ming Antu's calculation of 100 segment chord

A hundred segment arc's chord can be considered as composite 10 segment-10 subsegments, thus substituting a = y 10 {\displaystyle a=y_{10}} into y 10 {\displaystyle y_{10}} , after manipulation with infinite series he obtained:

y 100 = y 10 ( a = y 10 ) {\displaystyle y_{100}=y_{10}(a=y_{10})}

y 100 ( a ) = 100 × a 166650 × a 3 4 + 333000030 × a 5 4 × 16 316350028500 × a 7 4 × 16 2 + 17488840755750 × a 9 4 × 16 3 + {\displaystyle {\begin{aligned}y_{100}(a)=&100\times a-166650\times {\frac {a^{3}}{4}}+333000030\times {\frac {a^{5}}{4\times 16}}\\&-316350028500\times {\frac {a^{7}}{4\times 16^{2}}}+17488840755750\times {\frac {a^{9}}{4\times 16^{3}}}+\ldots \end{aligned}}}

Thousand-segment chord

y 1000 = y 100 ( y 10 ) {\displaystyle y_{1000}=y_{100}(y_{10})}

y 1000 ( a ) = 1000 × a 1666666500 × a 3 4 + 33333000000300 × a 5 4 × 16 3174492064314285000 a 7 4 × 16 2 + {\displaystyle y_{1000}(a)=1000\times a-1666666500\times {\frac {a^{3}}{4}}+33333000000300\times {\frac {a^{5}}{4\times 16}}-3174492064314285000{\frac {a^{7}}{4\times 16^{2}}}+} ......

Ten-thousand-segment chord

y 10000 = 10000 × a 166666665000 × a 3 4 + 33333330000000300 × a 5 4 3 + {\displaystyle y_{10000}=10000\times a-{\frac {166666665000\times a^{3}}{4}}+{\frac {33333330000000300\times a^{5}}{4^{3}}}+} ............

When number of segments approaches infinity

After obtained the infinite series for n=2, 3, 5, 10, 100, 1000, and 10000 segments, Ming Antu went on to handle the case when n approaches infinity.

y100, y1000 and y10000 can be rewritten as:

y 100 = 100 a ( 100 a ) 3 24.002400240024002400 + ( 100 a ) 5 24.024021859697730358 × 80 + {\displaystyle y100=100a-{\frac {(100a)^{3}}{24.002400240024002400}}+{\frac {(100a)^{5}}{24.024021859697730358\times 80}}+} ..........

y 1000 := 1000 a ( 1000 a ) 3 24.000024000024000024 + ( 1000 a ) 5 24.000240002184019680 × 80 + {\displaystyle y1000:=1000a-{\frac {(1000a)^{3}}{24.000024000024000024}}+{\frac {(1000a)^{5}}{24.000240002184019680\times 80}}+} ..............

y 10000 := 10000 a ( 10000 a ) 3 24.000000240000002400 + ( 10000 a ) 5 24.000002400000218400 × 80 + {\displaystyle y10000:=10000a-{\frac {(10000a)^{3}}{24.000000240000002400}}+{\frac {(10000a)^{5}}{24.000002400000218400\times 80}}+} ..................

He noted that when n approaches infinity, the denominators 24.000000240000002400, 24.000002400000218400×80 approach 24 and 24×80 respectively, and when n -> infinity, na (100a, 1000a, 1000a) becomes the length of the arc; hence

c h o r d = a r c a r c 3 4 × 3 ! + a r c 5 4 2 × 5 ! a r c 7 4 3 × 7 ! + {\displaystyle chord=arc-{\frac {arc^{3}}{4\times 3!}}+{\frac {arc^{5}}{4^{2}\times 5!}}-{\frac {arc^{7}}{4^{3}\times 7!}}+} .....

= n = 1 ( 1 ) n 1 × a r c 2 × n 1 ( 4 n 1 × ( 2 × n 1 ) ! ) {\displaystyle =\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}\times arc^{2\times n-1}}{(4^{n-1}\times (2\times n-1)!)}}}

Ming Antu then performed an infinite series reversion and expressed the arc in terms of its chord

a r c := c h o r d + c h o r d 3 24 + 3 × c h o r d 5 640 + 5 × c h o r d 7 7168 + {\displaystyle arc:=chord+{\frac {chord^{3}}{24}}+{\frac {3\times chord^{5}}{640}}+{\frac {5\times chord^{7}}{7168}}+} ............

References

  1. He Shaodong, "A Key Problem in the Study of Infinite Series", in The Qing Dynasty, Studies in the History of Natural Sciences vol 6 No3 1989 pp 205–214
  2. Li Yan "Selected Papers in History of Chinese Mathematics", book III, "Li Yan Qian Baocong History of Science Collection" Volume 7, 300
  3. ^ J.Luo p96
  4. Luo Jianjin p100
  5. Luo p106
  6. J. Luo, "Ming Antu and his power series expansion" Mathematical Journal 34 volume 1, pp. 65-73
  7. P Larcombe, The 18th Century Chinese Discovery of Catalan Numbers, Mathematical Spectrum, vol. 32, no. 1, pp. 5-7, 1999/2000
  8. Luo 113
  9. Yan Xue-min Luo Jian-jin, Catalan Numbers, A Geometric Model J.of Zhengzhou Univ Vol 38 No2, Jun 2006, p22
  10. Luo 114
  11. Luo p114
  12. ^ Yoshio Mikami, p147
  13. Luo p148
  14. ^ Luo p153
  15. Luo p156
  16. Luo p164
  17. ^ Yoshio Mikami p147
  18. Li Yan p320
  19. Li Yan p320页
  20. ^ Yoshio Mikami, p148
  • Luo A Modern Chinese Translation of Ming Antu's Geyuan Milv Jifa, translated and annotated by Luo Jianjin, Inner Mongolia Education Press 1998(明安图原著 罗见今译注 《割圆密率捷法》 内蒙古教育出版社 This is the only modern Chinese translation of Ming Antu's book, with detailed annotation with modern mathematical symbols). ISBN 7-5311-3584-1
  • Yoshio Mikami The Development of Mathematics in China and Japan, Leipzig, 1912
Category: