Misplaced Pages

Minimal polynomial of 2cos(2pi/n)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Equation for the real part of a root of unity

In number theory, the real parts of the roots of unity are related to one-another by means of the minimal polynomial of 2 cos ( 2 π / n ) . {\displaystyle 2\cos(2\pi /n).} The roots of the minimal polynomial are twice the real part of the roots of unity, where the real part of a root of unity is just cos ( 2 k π / n ) {\displaystyle \cos \left(2k\pi /n\right)} with k {\displaystyle k} coprime with n . {\displaystyle n.}

Formal definition

For an integer n 1 {\displaystyle n\geq 1} , the minimal polynomial Ψ n ( x ) {\displaystyle \Psi _{n}(x)} of 2 cos ( 2 π / n ) {\displaystyle 2\cos(2\pi /n)} is the non-zero monic polynomial of smallest degree for which Ψ n ( 2 cos ( 2 π / n ) ) = 0 {\displaystyle \Psi _{n}\!\left(2\cos(2\pi /n)\right)=0} .

For every n, the polynomial Ψ n ( x ) {\displaystyle \Psi _{n}(x)} is monic, has integer coefficients, and is irreducible over the integers and the rational numbers. All its roots are real; they are the real numbers 2 cos ( 2 k π / n ) {\displaystyle 2\cos \left(2k\pi /n\right)} with k {\displaystyle k} coprime with n {\displaystyle n} and either 1 k < n {\displaystyle 1\leq k<n} or k = n = 1. {\displaystyle k=n=1.} These roots are twice the real parts of the primitive nth roots of unity. The number of integers k {\displaystyle k} relatively prime to n {\displaystyle n} is given by Euler's totient function φ ( n ) ; {\displaystyle \varphi (n);} it follows that the degree of Ψ n ( x ) {\displaystyle \Psi _{n}(x)} is 1 {\displaystyle 1} for n = 1 , 2 {\displaystyle n=1,2} and φ ( n ) / 2 {\displaystyle \varphi (n)/2} for n 3. {\displaystyle n\geq 3.}

The first two polynomials are Ψ 1 ( x ) = x 2 {\displaystyle \Psi _{1}(x)=x-2} and Ψ 2 ( x ) = x + 2. {\displaystyle \Psi _{2}(x)=x+2.}

The polynomials Ψ n ( x ) {\displaystyle \Psi _{n}(x)} are typical examples of irreducible polynomials whose roots are all real and which have a cyclic Galois group.

Examples

The first few polynomials Ψ n ( x ) {\displaystyle \Psi _{n}(x)} are

Ψ 1 ( x ) = x 2 Ψ 2 ( x ) = x + 2 Ψ 3 ( x ) = x + 1 Ψ 4 ( x ) = x Ψ 5 ( x ) = x 2 + x 1 Ψ 6 ( x ) = x 1 Ψ 7 ( x ) = x 3 + x 2 2 x 1 Ψ 8 ( x ) = x 2 2 Ψ 9 ( x ) = x 3 3 x + 1 Ψ 10 ( x ) = x 2 x 1 Ψ 11 ( x ) = x 5 + x 4 4 x 3 3 x 2 + 3 x + 1 Ψ 12 ( x ) = x 2 3 Ψ 13 ( x ) = x 6 + x 5 5 x 4 4 x 3 + 6 x 2 + 3 x 1 Ψ 14 ( x ) = x 3 x 2 2 x + 1 Ψ 15 ( x ) = x 4 x 3 4 x 2 + 4 x + 1 Ψ 16 ( x ) = x 4 4 x 2 + 2 Ψ 17 ( x ) = x 8 + x 7 7 x 6 6 x 5 + 15 x 4 + 10 x 3 10 x 2 4 x + 1 Ψ 18 ( x ) = x 3 3 x 1 Ψ 19 ( x ) = x 9 + x 8 8 x 7 7 x 6 + 21 x 5 + 15 x 4 20 x 3 10 x 2 + 5 x + 1 Ψ 20 ( x ) = x 4 5 x 2 + 5 {\displaystyle {\begin{aligned}\Psi _{1}(x)&=x-2\\\Psi _{2}(x)&=x+2\\\Psi _{3}(x)&=x+1\\\Psi _{4}(x)&=x\\\Psi _{5}(x)&=x^{2}+x-1\\\Psi _{6}(x)&=x-1\\\Psi _{7}(x)&=x^{3}+x^{2}-2x-1\\\Psi _{8}(x)&=x^{2}-2\\\Psi _{9}(x)&=x^{3}-3x+1\\\Psi _{10}(x)&=x^{2}-x-1\\\Psi _{11}(x)&=x^{5}+x^{4}-4x^{3}-3x^{2}+3x+1\\\Psi _{12}(x)&=x^{2}-3\\\Psi _{13}(x)&=x^{6}+x^{5}-5x^{4}-4x^{3}+6x^{2}+3x-1\\\Psi _{14}(x)&=x^{3}-x^{2}-2x+1\\\Psi _{15}(x)&=x^{4}-x^{3}-4x^{2}+4x+1\\\Psi _{16}(x)&=x^{4}-4x^{2}+2\\\Psi _{17}(x)&=x^{8}+x^{7}-7x^{6}-6x^{5}+15x^{4}+10x^{3}-10x^{2}-4x+1\\\Psi _{18}(x)&=x^{3}-3x-1\\\Psi _{19}(x)&=x^{9}+x^{8}-8x^{7}-7x^{6}+21x^{5}+15x^{4}-20x^{3}-10x^{2}+5x+1\\\Psi _{20}(x)&=x^{4}-5x^{2}+5\end{aligned}}}

Explicit form if n is odd

If n {\displaystyle n} is an odd prime, the polynomial Ψ n ( x ) {\displaystyle \Psi _{n}(x)} can be written in terms of binomial coefficients following a "zigzag path" through Pascal's triangle:

Putting n = 2 m + 1 {\displaystyle n=2m+1} and

χ n ( x ) : = ( m 0 ) x m + ( m 1 0 ) x m 1 ( m 1 1 ) x m 2 ( m 2 1 ) x m 3 + ( m 2 2 ) x m 4 + ( m 3 2 ) x m 5 + + = k = 0 m ( 1 ) k / 2 ( m ( k + 1 ) / 2 k / 2 ) x m k = ( m m ) x m + ( m 1 m 1 ) x m 1 ( m 1 m 2 ) x m 2 ( m 2 m 3 ) x m 3 + ( m 2 m 4 ) x m 4 + ( m 3 m 5 ) x m 5 + + = k = 0 m ( 1 ) ( m k ) / 2 ( ( m + k ) / 2 k ) x k , {\displaystyle {\begin{aligned}\chi _{n}(x):&={\binom {m}{0}}x^{m}+{\binom {m-1}{0}}x^{m-1}-{\binom {m-1}{1}}x^{m-2}-{\binom {m-2}{1}}x^{m-3}+{\binom {m-2}{2}}x^{m-4}+{\binom {m-3}{2}}x^{m-5}--++\cdots \\&=\sum _{k=0}^{m}(-1)^{\lfloor k/2\rfloor }{\binom {m-\lfloor (k+1)/2\rfloor }{\lfloor k/2\rfloor }}x^{m-k}\\&={\binom {m}{m}}x^{m}+{\binom {m-1}{m-1}}x^{m-1}-{\binom {m-1}{m-2}}x^{m-2}-{\binom {m-2}{m-3}}x^{m-3}+{\binom {m-2}{m-4}}x^{m-4}+{\binom {m-3}{m-5}}x^{m-5}--++\cdots \\&=\sum _{k=0}^{m}(-1)^{\lfloor (m-k)/2\rfloor }{\binom {\lfloor (m+k)/2\rfloor }{k}}x^{k},\end{aligned}}}

then we have Ψ p ( x ) = χ p ( x ) {\displaystyle \Psi _{p}(x)=\chi _{p}(x)} for primes p {\displaystyle p} .

If n {\displaystyle n} is odd but not a prime, the same polynomial χ n ( x ) {\displaystyle \chi _{n}(x)} , as can be expected, is reducible and, corresponding to the structure of the cyclotomic polynomials Φ d ( x ) {\displaystyle \Phi _{d}(x)} reflected by the formula d n Φ d ( x ) = x n 1 {\displaystyle \prod _{d\mid n}\Phi _{d}(x)=x^{n}-1} , turns out to be just the product of all Ψ d ( x ) {\displaystyle \Psi _{d}(x)} for the divisors d > 1 {\displaystyle d>1} of n {\displaystyle n} , including n {\displaystyle n} itself:

d n d > 1 Ψ d ( x ) = χ n ( x ) . {\displaystyle \prod _{d\mid n \atop d>1}\Psi _{d}(x)=\chi _{n}(x).}

This means that the Ψ d ( x ) {\displaystyle \Psi _{d}(x)} are exactly the irreducible factors of χ n ( x ) {\displaystyle \chi _{n}(x)} , which allows to easily obtain Ψ d ( x ) {\displaystyle \Psi _{d}(x)} for any odd d {\displaystyle d} , knowing its degree 1 2 φ ( d ) {\displaystyle {\frac {1}{2}}\varphi (d)} . For example,

χ 15 ( x ) = x 7 + x 6 6 x 5 5 x 4 + 10 x 3 + 6 x 2 4 x 1 = ( x + 1 ) ( x 2 + x 1 ) ( x 4 x 3 4 x 2 + 4 x + 1 ) = Ψ 3 ( x ) Ψ 5 ( x ) Ψ 15 ( x ) . {\displaystyle {\begin{aligned}\chi _{15}(x)&=x^{7}+x^{6}-6x^{5}-5x^{4}+10x^{3}+6x^{2}-4x-1\\&=(x+1)(x^{2}+x-1)(x^{4}-x^{3}-4x^{2}+4x+1)\\&=\Psi _{3}(x)\cdot \Psi _{5}(x)\cdot \Psi _{15}(x).\end{aligned}}}

Explicit form if n is even

From the below formula in terms of Chebyshev polynomials and the product formula for odd n {\displaystyle n} above, we can derive for even n {\displaystyle n}

d n d > 1 Ψ d ( x ) = ( χ n + 1 ( x ) + χ n 1 ( x ) ) . {\displaystyle \prod _{d\mid n \atop d>1}\Psi _{d}(x)={\Big (}\chi _{n+1}(x)+\chi _{n-1}(x){\Big )}.}

Independently of this, if n = 2 k {\displaystyle n=2^{k}} is an even prime power, we have for k 2 {\displaystyle k\geq 2} the recursion (see OEISA158982)

Ψ 2 k + 1 ( x ) = ( Ψ 2 k ( x ) ) 2 2 {\displaystyle \Psi _{2^{k+1}}(x)=(\Psi _{2^{k}}(x))^{2}-2} ,

starting with Ψ 4 ( x ) = x {\displaystyle \Psi _{4}(x)=x} .

Roots

The roots of Ψ n ( x ) {\displaystyle \Psi _{n}(x)} are given by 2 cos ( 2 π k n ) {\displaystyle 2\cos \left({\frac {2\pi k}{n}}\right)} , where 1 k < n 2 {\displaystyle 1\leq k<{\frac {n}{2}}} and gcd ( k , n ) = 1 {\displaystyle \gcd(k,n)=1} . Since Ψ n ( x ) {\displaystyle \Psi _{n}(x)} is monic, we have

Ψ n ( x ) = 1 k < n 2 gcd ( k , n ) = 1 ( x 2 cos ( 2 π k n ) ) . {\displaystyle \Psi _{n}(x)=\displaystyle \prod _{\begin{array}{c}1\leq k<{\frac {n}{2}}\\\gcd(k,n)=1\end{array}}\left(x-2\cos \left({\frac {2\pi k}{n}}\right)\right).}

Combining this result with the fact that the function cos ( x ) {\displaystyle \cos(x)} is even, we find that 2 cos ( 2 π k n ) {\displaystyle 2\cos \left({\frac {2\pi k}{n}}\right)} is an algebraic integer for any positive integer n {\displaystyle n} and any integer k {\displaystyle k} .

Relation to the cyclotomic polynomials

For a positive integer n {\displaystyle n} , let ζ n = exp ( 2 π i n ) = cos ( 2 π n ) + sin ( 2 π n ) i {\displaystyle \zeta _{n}=\exp \left({\frac {2\pi i}{n}}\right)=\cos \left({\frac {2\pi }{n}}\right)+\sin \left({\frac {2\pi }{n}}\right)i} , a primitive n {\displaystyle n} -th root of unity. Then the minimal polynomial of ζ n {\displaystyle \zeta _{n}} is given by the n {\displaystyle n} -th cyclotomic polynomial Φ n ( x ) {\displaystyle \Phi _{n}(x)} . Since ζ n 1 = cos ( 2 π n ) sin ( 2 π n ) i {\displaystyle \zeta _{n}^{-1}=\cos \left({\frac {2\pi }{n}}\right)-\sin \left({\frac {2\pi }{n}}\right)i} , the relation between 2 cos ( 2 π n ) {\displaystyle 2\cos \left({\frac {2\pi }{n}}\right)} and ζ n {\displaystyle \zeta _{n}} is given by 2 cos ( 2 π n ) = ζ n + ζ n 1 {\displaystyle 2\cos \left({\frac {2\pi }{n}}\right)=\zeta _{n}+\zeta _{n}^{-1}} . This relation can be exhibited in the following identity proved by Lehmer, which holds for any non-zero complex number z {\displaystyle z} :

Ψ n ( z + z 1 ) = z φ ( n ) 2 Φ n ( z ) {\displaystyle \Psi _{n}\left(z+z^{-1}\right)=z^{-{\frac {\varphi (n)}{2}}}\Phi _{n}(z)}

Relation to Chebyshev polynomials

In 1993, Watkins and Zeitlin established the following relation between Ψ n ( x ) {\displaystyle \Psi _{n}(x)} and Chebyshev polynomials of the first kind.

If n = 2 s + 1 {\displaystyle n=2s+1} is odd, then

d n Ψ d ( 2 x ) = 2 ( T s + 1 ( x ) T s ( x ) ) , {\displaystyle \prod _{d\mid n}\Psi _{d}(2x)=2(T_{s+1}(x)-T_{s}(x)),}

and if n = 2 s {\displaystyle n=2s} is even, then

d n Ψ d ( 2 x ) = 2 ( T s + 1 ( x ) T s 1 ( x ) ) . {\displaystyle \prod _{d\mid n}\Psi _{d}(2x)=2(T_{s+1}(x)-T_{s-1}(x)).}

If n {\displaystyle n} is a power of 2 {\displaystyle 2} , we have moreover directly

Ψ 2 k + 1 ( 2 x ) = 2 T 2 k 1 ( x ) . {\displaystyle \Psi _{2^{k+1}}(2x)=2T_{2^{k-1}}(x).}

Absolute value of the constant coefficient

The absolute value of the constant coefficient of Ψ n ( x ) {\displaystyle \Psi _{n}(x)} can be determined as follows:

| Ψ n ( 0 ) | = { 0 if   n = 4 , 2 if   n = 2 k , k 0 , k 2 , p if   n = 4 p k , k 1 , p > 2   prime, 1 otherwise. {\displaystyle |\Psi _{n}(0)|={\begin{cases}0&{\text{if}}\ n=4,\\2&{\text{if}}\ n=2^{k},k\geq 0,k\neq 2,\\p&{\text{if}}\ n=4p^{k},k\geq 1,p>2\ {\text{prime,}}\\1&{\text{otherwise.}}\end{cases}}}

Generated algebraic number field

The algebraic number field K n = Q ( ζ n + ζ n 1 ) {\displaystyle K_{n}=\mathbb {Q} \left(\zeta _{n}+\zeta _{n}^{-1}\right)} is the maximal real subfield of a cyclotomic field Q ( ζ n ) {\displaystyle \mathbb {Q} (\zeta _{n})} . If O K n {\displaystyle {\mathcal {O}}_{K_{n}}} denotes the ring of integers of K n {\displaystyle K_{n}} , then O K n = Z [ ζ n + ζ n 1 ] {\displaystyle {\mathcal {O}}_{K_{n}}=\mathbb {Z} \left} . In other words, the set { 1 , ζ n + ζ n 1 , , ( ζ n + ζ n 1 ) φ ( n ) 2 1 } {\displaystyle \left\{1,\zeta _{n}+\zeta _{n}^{-1},\ldots ,\left(\zeta _{n}+\zeta _{n}^{-1}\right)^{{\frac {\varphi (n)}{2}}-1}\right\}} is an integral basis of O K n {\displaystyle {\mathcal {O}}_{K_{n}}} . In view of this, the discriminant of the algebraic number field K n {\displaystyle K_{n}} is equal to the discriminant of the polynomial Ψ n ( x ) {\displaystyle \Psi _{n}(x)} , that is

D K n = { 2 ( m 1 ) 2 m 2 1 if   n = 2 m , m > 2 , p ( m p m ( m + 1 ) p m 1 1 ) / 2 if   n = p m   or   2 p m , p > 2   prime , ( i = 1 ω ( n ) p i e i 1 / ( p i 1 ) ) φ ( n ) 2 if   ω ( n ) > 1 , k 2 p m . {\displaystyle D_{K_{n}}={\begin{cases}2^{(m-1)2^{m-2}-1}&{\text{if}}\ n=2^{m},m>2,\\p^{(mp^{m}-(m+1)p^{m-1}-1)/2}&{\text{if}}\ n=p^{m}\ {\text{or}}\ 2p^{m},p>2\ {\text{prime}},\\\left(\prod _{i=1}^{\omega (n)}p_{i}^{e_{i}-1/(p_{i}-1)}\right)^{\frac {\varphi (n)}{2}}&{\text{if}}\ \omega (n)>1,k\neq 2p^{m}.\end{cases}}}

References

  1. ^ W. Watkins and J. Zeitlin (1993). "The minimal polynomial of cos ( 2 π / n ) {\displaystyle \cos(2\pi /n)} ". The American Mathematical Monthly. 100 (5): 471–474. doi:10.2307/2324301. JSTOR 2324301.
  2. D. H. Lehmer (1933). "A note on trigonometric algebraic numbers". The American Mathematical Monthly. 40 (3): 165–166. doi:10.2307/2301023. JSTOR 2301023.
  3. see OEIS A064984
  4. C. Adiga, I. N. Cangul and H. N. Ramaswamy (2016). "On the constant term of the minimal polynomial of cos ( 2 π n ) {\displaystyle \cos \left({\frac {2\pi }{n}}\right)} over Q {\displaystyle \mathbb {Q} } ". Filomat. 30 (4): 1097–1102. doi:10.2298/FIL1604097A.
  5. J. J. Liang (1976). "On the integral basis of the maximal real subfield of a cyclotomic field". Journal für die reine und angewandte Mathematik. 286–287: 223–226.
Categories: